Examining Prenylated Xanthones as Potential Inhibitors Against Ketohexokinase C Isoform for the Treatment of Fructose-Driven Metabolic Disorders: An Integrated Computational Approach.
{"title":"Examining Prenylated Xanthones as Potential Inhibitors Against Ketohexokinase C Isoform for the Treatment of Fructose-Driven Metabolic Disorders: An Integrated Computational Approach.","authors":"Tilal Elsaman, Magdi Awadalla Mohamed","doi":"10.3390/ph18010126","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Fructose-driven metabolic disorders, such as obesity, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and type 2 diabetes, are significant global health challenges. Ketohexokinase C (KHK-C), a key enzyme in fructose metabolism, is a promising therapeutic target. α-Mangostin, a naturally occurring prenylated xanthone, has been identified as an effective KHK-C inhibitor, prompting exploration of its analogs for enhanced efficacy. This study aimed to identify α-Mangostin analogs with improved inhibitory properties against KHK-C to address these disorders. <b>Methods:</b> A library of 1383 analogs was compiled from chemical databases and the literature. Molecular docking, binding free energy calculations, pharmacokinetic assessments, molecular dynamics simulations, and quantum mechani-cal analyses were used to screen and evaluate the compounds. α-Mangostin's binding affinity (37.34 kcal/mol) served as the benchmark. <b>Results:</b> Sixteen analogs demonstrated binding affinities superior to α-Mangostin (from -45.51 to -61.3 kcal/mol), LY-3522348 (-45.36 kcal/mol), and reported marine-derived inhibitors (from -22.74 to -51.83 kcal/mol). Hits <b>7</b>, <b>8</b>, <b>9</b>, <b>13</b>, and <b>15</b> not only surpassed these benchmarks in binding affinity, but also exhibited superior pharmacokinetic properties compared to α-Mangostin, LY-3522348, and marine-derived inhibitors, indicating strong in vivo potential. Among these, hit <b>8</b> emerged as the best performer, achieving a binding free energy of -61.30 kcal/mol, 100% predicted oral absorption, enhanced metabolic stability, and stable molecular dynamics. <b>Conclusions:</b> Hit <b>8</b> emerged as the most promising candidate due to its superior binding affinity, favorable pharmacokinetics, and stable interactions with KHK-C. These findings highlight its potential for treating fructose-driven metabolic disorders, warranting further experimental validation.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18010126","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Fructose-driven metabolic disorders, such as obesity, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and type 2 diabetes, are significant global health challenges. Ketohexokinase C (KHK-C), a key enzyme in fructose metabolism, is a promising therapeutic target. α-Mangostin, a naturally occurring prenylated xanthone, has been identified as an effective KHK-C inhibitor, prompting exploration of its analogs for enhanced efficacy. This study aimed to identify α-Mangostin analogs with improved inhibitory properties against KHK-C to address these disorders. Methods: A library of 1383 analogs was compiled from chemical databases and the literature. Molecular docking, binding free energy calculations, pharmacokinetic assessments, molecular dynamics simulations, and quantum mechani-cal analyses were used to screen and evaluate the compounds. α-Mangostin's binding affinity (37.34 kcal/mol) served as the benchmark. Results: Sixteen analogs demonstrated binding affinities superior to α-Mangostin (from -45.51 to -61.3 kcal/mol), LY-3522348 (-45.36 kcal/mol), and reported marine-derived inhibitors (from -22.74 to -51.83 kcal/mol). Hits 7, 8, 9, 13, and 15 not only surpassed these benchmarks in binding affinity, but also exhibited superior pharmacokinetic properties compared to α-Mangostin, LY-3522348, and marine-derived inhibitors, indicating strong in vivo potential. Among these, hit 8 emerged as the best performer, achieving a binding free energy of -61.30 kcal/mol, 100% predicted oral absorption, enhanced metabolic stability, and stable molecular dynamics. Conclusions: Hit 8 emerged as the most promising candidate due to its superior binding affinity, favorable pharmacokinetics, and stable interactions with KHK-C. These findings highlight its potential for treating fructose-driven metabolic disorders, warranting further experimental validation.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.