Quinazolinone Derivative MR2938 Protects DSS-Induced Barrier Dysfunction in Mice Through Regulating Gut Microbiota.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Pharmaceuticals Pub Date : 2025-01-17 DOI:10.3390/ph18010123
Ling Lv, Mireguli Maimaitiming, Jichen Yang, Shuli Xia, Xin Li, Pingyuan Wang, Zhiqing Liu, Chang-Yun Wang
{"title":"Quinazolinone Derivative MR2938 Protects DSS-Induced Barrier Dysfunction in Mice Through Regulating Gut Microbiota.","authors":"Ling Lv, Mireguli Maimaitiming, Jichen Yang, Shuli Xia, Xin Li, Pingyuan Wang, Zhiqing Liu, Chang-Yun Wang","doi":"10.3390/ph18010123","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), is characterized by colorectal immune infiltration and significant microbiota compositional changes. Gut microbiota homeostasis is necessary to maintain the healthy state of humans. MR2938, a quinazolin-4(3H)-one derivative derived from the marine natural product penipanoid C, alleviated DSS-induced colitis in a dose-dependent manner. Herein, we aimed to investigate the impact of MR2938 on the gut microbiota in dextran sodium sulfate (DSS)-induced colitis in mice and to elucidate the role of the gut microbiota in the therapeutic mechanism of MR2938 for alleviating colitis. <b>Methods</b>: Acute colitis was induced with DSS in mice. Mice were administered with 100 mg/kg or 50 mg/kg of MR2938. Cecal content was also preserved in liquid nitrogen and subsequently analyzed following 16S RNA sequencing. Antibiotic cocktail-induced microbiome depletion was performed to further investigate the relationship between MR2938 and gut microbiota. The inflammatory factor levels were performed by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). Alcian blue staining and immunofluorescence were used to estimate the intestinal barrier. <b>Results</b>: The 16S rRNA sequencing revealed microbiota modulation by MR2938. Compared with the model group, the 100 mg/kg MR2938 group was associated with higher abundances of <i>Entercoccus</i> and a lower abundance of <i>Staphylococcus</i>, while the 50 mg/kg MR2938 group was associated with higher abundances of <i>Lactobacillus</i> and a lower abundance of <i>Staphylococcus</i>. The antibiotic-mediated microbiota depletion experiments demonstrated that the gut microbiota primarily contributed to barrier function protection, with little impact on inflammatory factor levels during the MR2938 treatment. <b>Conclusions</b>: These findings suggest that intestinal flora play a crucial role in MR2938's therapeutic mechanism for alleviating colitis.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768254/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18010123","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), is characterized by colorectal immune infiltration and significant microbiota compositional changes. Gut microbiota homeostasis is necessary to maintain the healthy state of humans. MR2938, a quinazolin-4(3H)-one derivative derived from the marine natural product penipanoid C, alleviated DSS-induced colitis in a dose-dependent manner. Herein, we aimed to investigate the impact of MR2938 on the gut microbiota in dextran sodium sulfate (DSS)-induced colitis in mice and to elucidate the role of the gut microbiota in the therapeutic mechanism of MR2938 for alleviating colitis. Methods: Acute colitis was induced with DSS in mice. Mice were administered with 100 mg/kg or 50 mg/kg of MR2938. Cecal content was also preserved in liquid nitrogen and subsequently analyzed following 16S RNA sequencing. Antibiotic cocktail-induced microbiome depletion was performed to further investigate the relationship between MR2938 and gut microbiota. The inflammatory factor levels were performed by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). Alcian blue staining and immunofluorescence were used to estimate the intestinal barrier. Results: The 16S rRNA sequencing revealed microbiota modulation by MR2938. Compared with the model group, the 100 mg/kg MR2938 group was associated with higher abundances of Entercoccus and a lower abundance of Staphylococcus, while the 50 mg/kg MR2938 group was associated with higher abundances of Lactobacillus and a lower abundance of Staphylococcus. The antibiotic-mediated microbiota depletion experiments demonstrated that the gut microbiota primarily contributed to barrier function protection, with little impact on inflammatory factor levels during the MR2938 treatment. Conclusions: These findings suggest that intestinal flora play a crucial role in MR2938's therapeutic mechanism for alleviating colitis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信