A multiplexing method based on multidimensional readout method.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Xin Yu, Han Liu, Huiping Zhao, Jinyong Tao, Da Liang, Jiayang Zeng, Jianfeng Xu, Siwei Xie, Qiyu Peng
{"title":"A multiplexing method based on multidimensional readout method<sup />.","authors":"Xin Yu, Han Liu, Huiping Zhao, Jinyong Tao, Da Liang, Jiayang Zeng, Jianfeng Xu, Siwei Xie, Qiyu Peng","doi":"10.1088/1361-6560/adae4c","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>To develop and validate a novel multidimensional readout method that significantly reduces the number of readout channels (NRC) in PET detectors while maintaining high spatial and energy performance.<i>Approach.</i>We arranged a3×3×4SiPM array in multiple dimensions and employed row/column/layer summation with a resistor-based splitting circuit. We then applied denoising methods to enhance the peak-to-valley ratio in the decoding map, ensuring accurate crystal-position determination. Additionally, we investigated the system's energy response at 511 keV and evaluated the suitability for both clinical and research PET systems.<i>Main results.</i>The proposed multidimensional readout method achieved a favorable multiplexing ratio, lowering the total NRCs without compromising energy resolution at 511 keV. Our tests demonstrated that a SiPM bias voltage of 31 V effectively balances gain and saturation effects, resulting in reliable energy measurements.<i>Significance.</i>By reducing system complexity, cost, and power consumption, the multidimensional readout method presents a practical alternative to conventional readout schemes for PET and other large-scale sensor arrays. Additionally, the approach can manage simultaneous multi-layer hits by arranging detector layers and, when needed, uses ICS detection to correct for scatter events. Its adaptable architecture allows scaling to higher dimensions for broader applications (e.g. SPECT, CT, LiDAR). These features make it a valuable contribution toward more efficient, high-performance imaging technologies in both clinical and industrial settings.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adae4c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.To develop and validate a novel multidimensional readout method that significantly reduces the number of readout channels (NRC) in PET detectors while maintaining high spatial and energy performance.Approach.We arranged a3×3×4SiPM array in multiple dimensions and employed row/column/layer summation with a resistor-based splitting circuit. We then applied denoising methods to enhance the peak-to-valley ratio in the decoding map, ensuring accurate crystal-position determination. Additionally, we investigated the system's energy response at 511 keV and evaluated the suitability for both clinical and research PET systems.Main results.The proposed multidimensional readout method achieved a favorable multiplexing ratio, lowering the total NRCs without compromising energy resolution at 511 keV. Our tests demonstrated that a SiPM bias voltage of 31 V effectively balances gain and saturation effects, resulting in reliable energy measurements.Significance.By reducing system complexity, cost, and power consumption, the multidimensional readout method presents a practical alternative to conventional readout schemes for PET and other large-scale sensor arrays. Additionally, the approach can manage simultaneous multi-layer hits by arranging detector layers and, when needed, uses ICS detection to correct for scatter events. Its adaptable architecture allows scaling to higher dimensions for broader applications (e.g. SPECT, CT, LiDAR). These features make it a valuable contribution toward more efficient, high-performance imaging technologies in both clinical and industrial settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信