A safe haven for cancer cells: tumor plus stroma control by DYRK1B.

IF 6.9 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Miriam Ems, Anna Brichkina, Matthias Lauth
{"title":"A safe haven for cancer cells: tumor plus stroma control by DYRK1B.","authors":"Miriam Ems, Anna Brichkina, Matthias Lauth","doi":"10.1038/s41388-025-03275-6","DOIUrl":null,"url":null,"abstract":"<p><p>The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated. In this review, we describe a seemingly paradoxical oncogenic mediator with this potential: The dual-specificity tyrosine-phosphorylation regulated kinase 1B (DYRK1B). DYRK1B promotes proliferative quiescence and yet is overexpressed or amplified in many hyperproliferative malignancies including ovarian cancer and pancreatic cancer. In particular the latter disease is a paradigmatic example for a therapy-recalcitrant and highly stroma-rich cancer entity. Here, recent evidence suggests that DYRK1B exerts its oncogenic features by installing a protective niche for cancer cells by directly affecting cancer cells but also the TME. Specifically, DYRK1B not only fosters cell-intrinsic processes like cell survival, chemoresistance, and disease recurrence, but it also upregulates TME and cancer cell-protective innate immune checkpoints and down-modulates anti-tumoral macrophage functionality. In this article, we outline the well-established cell-autonomous roles of DYRK1B and extend its importance to the TME and the control of the tumor immune stroma. In summary, DYRK1B appears as a single novel key player creating a safe haven for cancer cells by acting cell-intrinsically and-extrinsically, leading to the promotion of cancer cell survival, chemoresistance, and relapse. Thus, DYRK1B appears as an attractive drug target for future therapeutic approaches.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03275-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated. In this review, we describe a seemingly paradoxical oncogenic mediator with this potential: The dual-specificity tyrosine-phosphorylation regulated kinase 1B (DYRK1B). DYRK1B promotes proliferative quiescence and yet is overexpressed or amplified in many hyperproliferative malignancies including ovarian cancer and pancreatic cancer. In particular the latter disease is a paradigmatic example for a therapy-recalcitrant and highly stroma-rich cancer entity. Here, recent evidence suggests that DYRK1B exerts its oncogenic features by installing a protective niche for cancer cells by directly affecting cancer cells but also the TME. Specifically, DYRK1B not only fosters cell-intrinsic processes like cell survival, chemoresistance, and disease recurrence, but it also upregulates TME and cancer cell-protective innate immune checkpoints and down-modulates anti-tumoral macrophage functionality. In this article, we outline the well-established cell-autonomous roles of DYRK1B and extend its importance to the TME and the control of the tumor immune stroma. In summary, DYRK1B appears as a single novel key player creating a safe haven for cancer cells by acting cell-intrinsically and-extrinsically, leading to the promotion of cancer cell survival, chemoresistance, and relapse. Thus, DYRK1B appears as an attractive drug target for future therapeutic approaches.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncogene
Oncogene 医学-生化与分子生物学
CiteScore
15.30
自引率
1.20%
发文量
404
审稿时长
1 months
期刊介绍: Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge. Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信