Pharmacological characterization of the novel selective kappa opioid receptor agonists 10-Iodo-Akuammicine and 10-Bromo-akuammicine in mice

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Kathryn Bland , Chongguang Chen , Peng Huang , Conrad Ho , Theodora Howe , Katrina Ocampo , Pingwei Zhao , Simone Creed , Joseph Noel-Torres , Andrew P. Riley , Lee-Yuan Liu-Chen
{"title":"Pharmacological characterization of the novel selective kappa opioid receptor agonists 10-Iodo-Akuammicine and 10-Bromo-akuammicine in mice","authors":"Kathryn Bland ,&nbsp;Chongguang Chen ,&nbsp;Peng Huang ,&nbsp;Conrad Ho ,&nbsp;Theodora Howe ,&nbsp;Katrina Ocampo ,&nbsp;Pingwei Zhao ,&nbsp;Simone Creed ,&nbsp;Joseph Noel-Torres ,&nbsp;Andrew P. Riley ,&nbsp;Lee-Yuan Liu-Chen","doi":"10.1016/j.neuropharm.2025.110316","DOIUrl":null,"url":null,"abstract":"<div><div>Akuammicine (AKC), an indole alkaloid, is a kappa opioid receptor (KOR) full agonist with a moderate affinity. 10-Iodo-akuammicine (I-AKC) and 10-Bromo-akuammicine (Br-AKC) showed higher affinities for the KOR with K<sub>i</sub> values of 2.4 and 5.1 nM, respectively, and high selectivity for the KOR over other opioid receptors. Both were KOR full agonists. As AKC and derivatives have distinctly different chemical structures from other KOR agonists, herein we investigated whether Br-AKC and I-AKC produced similar pharmacological effects as typical KOR agonists. Br-AKC and I-AKC inhibited compound 48/80-induced scratching in a dose-dependent manner, with ED<sub>50</sub> values of 3.0 and 1.3 mg/kg (s.c.), respectively, indicating anti-pruritic activities. Side effects of I-AKC and Br-AKC and their promotion of KOR phosphorylation and internalization were examined using doses in the effective anti-scratch dose range, at 1.9-3.8x ED<sub>50</sub> and 1.7-3.3x ED<sub>50</sub>, respectively. At 5 mg/kg, Br-AKC and I-AKC produced profound conditioned place aversion (CPA). Br-AKC (10 mg/kg), but not I-AKC (5 mg/kg), reduced novelty-induced hyperlocomotion, and Br-AKC impaired rotarod performance more profoundly than I-AKC. Br-AKC, but not I-AKC, caused KOR phosphorylation at S369 in the mouse brain and KOR internalization in the ventral tegmental area. These results indicate that Br-AKC and I-AKC produce anti-scratch effect and CPA, similar to typical KOR agonists. However, there are some differences between the two. In addition, KOR phosphorylation and internalization in mouse brains are not associated with CPA but may be related to hypolocomotion and impaired rotarod performance. This is the first <em>in vivo</em> pharmacological characterization of AKC derivatives.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"268 ","pages":"Article 110316"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002839082500022X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Akuammicine (AKC), an indole alkaloid, is a kappa opioid receptor (KOR) full agonist with a moderate affinity. 10-Iodo-akuammicine (I-AKC) and 10-Bromo-akuammicine (Br-AKC) showed higher affinities for the KOR with Ki values of 2.4 and 5.1 nM, respectively, and high selectivity for the KOR over other opioid receptors. Both were KOR full agonists. As AKC and derivatives have distinctly different chemical structures from other KOR agonists, herein we investigated whether Br-AKC and I-AKC produced similar pharmacological effects as typical KOR agonists. Br-AKC and I-AKC inhibited compound 48/80-induced scratching in a dose-dependent manner, with ED50 values of 3.0 and 1.3 mg/kg (s.c.), respectively, indicating anti-pruritic activities. Side effects of I-AKC and Br-AKC and their promotion of KOR phosphorylation and internalization were examined using doses in the effective anti-scratch dose range, at 1.9-3.8x ED50 and 1.7-3.3x ED50, respectively. At 5 mg/kg, Br-AKC and I-AKC produced profound conditioned place aversion (CPA). Br-AKC (10 mg/kg), but not I-AKC (5 mg/kg), reduced novelty-induced hyperlocomotion, and Br-AKC impaired rotarod performance more profoundly than I-AKC. Br-AKC, but not I-AKC, caused KOR phosphorylation at S369 in the mouse brain and KOR internalization in the ventral tegmental area. These results indicate that Br-AKC and I-AKC produce anti-scratch effect and CPA, similar to typical KOR agonists. However, there are some differences between the two. In addition, KOR phosphorylation and internalization in mouse brains are not associated with CPA but may be related to hypolocomotion and impaired rotarod performance. This is the first in vivo pharmacological characterization of AKC derivatives.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信