The Stability-Indicating Ultra High-Performance Liquid Chromatography with Diode Array Detector and Tandem Mass Spectrometry Method Applied for the Forced Degradation Study of Ritlecitinib: An Appraisal of Green and Blue Metrics.
Jelena Kovačić, Daniela Amidžić Klarić, Nikša Turk, Željko Krznarić, Emma Riordan, Ana Mornar
{"title":"The Stability-Indicating Ultra High-Performance Liquid Chromatography with Diode Array Detector and Tandem Mass Spectrometry Method Applied for the Forced Degradation Study of Ritlecitinib: An Appraisal of Green and Blue Metrics.","authors":"Jelena Kovačić, Daniela Amidžić Klarić, Nikša Turk, Željko Krznarić, Emma Riordan, Ana Mornar","doi":"10.3390/ph18010124","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Janus kinase inhibitors open new horizons for small-molecule drugs in treating inflammatory bowel disease, with ritlecitinib demonstrating significant efficacy in clinical trials for ulcerative colitis and Crohn's disease. Ritlecitinib, a second-generation JAK3 inhibitor, is a novel therapeutic agent for alopecia areata and other autoimmune conditions.</p><p><strong>Methods: </strong>A new stability-indicating UHPLC-DAD-MS/MS method was developed, validated, and applied for a forced degradation study of ritlecitinib under ICH guidelines.</p><p><strong>Results: </strong>The method demonstrated high specificity, sensitivity (LOD: 0.04 µg/mL; LOQ: 0.14 µg/mL), precision (RSD ≤ 0.15%), and accuracy (99.9-100.3%). Forced degradation studies under acidic, basic, oxidative, thermal, and photolytic conditions revealed four novel degradation products. Basic degradation followed second-order kinetics, while oxidative degradation followed zero-order kinetics.</p><p><strong>Conclusions: </strong>The validated method reliably characterized ritlecitinib's stability and degradation products, providing essential data for optimizing formulation, determining proper storage conditions, anticipating drug-excipient interactions, and ensuring quality control. The eco-friendliness and applicability of the developed forced degradation procedure were evaluated using various green and blue metric tools. Incorporating green analytical principles underscores its potential for sustainable pharmaceutical analysis.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18010124","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Janus kinase inhibitors open new horizons for small-molecule drugs in treating inflammatory bowel disease, with ritlecitinib demonstrating significant efficacy in clinical trials for ulcerative colitis and Crohn's disease. Ritlecitinib, a second-generation JAK3 inhibitor, is a novel therapeutic agent for alopecia areata and other autoimmune conditions.
Methods: A new stability-indicating UHPLC-DAD-MS/MS method was developed, validated, and applied for a forced degradation study of ritlecitinib under ICH guidelines.
Results: The method demonstrated high specificity, sensitivity (LOD: 0.04 µg/mL; LOQ: 0.14 µg/mL), precision (RSD ≤ 0.15%), and accuracy (99.9-100.3%). Forced degradation studies under acidic, basic, oxidative, thermal, and photolytic conditions revealed four novel degradation products. Basic degradation followed second-order kinetics, while oxidative degradation followed zero-order kinetics.
Conclusions: The validated method reliably characterized ritlecitinib's stability and degradation products, providing essential data for optimizing formulation, determining proper storage conditions, anticipating drug-excipient interactions, and ensuring quality control. The eco-friendliness and applicability of the developed forced degradation procedure were evaluated using various green and blue metric tools. Incorporating green analytical principles underscores its potential for sustainable pharmaceutical analysis.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.