{"title":"GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy.","authors":"Binghe Tan, Chuntian Tu, Hao Xiong, Yongqian Xu, Xiujuan Shi, Xiaolin Zhang, Ruijie Yang, Na Zhang, Boxu Lin, Mingyao Liu, Juliang Qin, Bing Du","doi":"10.1016/j.ymthe.2025.01.036","DOIUrl":null,"url":null,"abstract":"<p><p>CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells. Compared to PSMA-BB-Z CAR-T, PSMA-BB-Z-GITRL CAR-T cells have much more IFN-γ, TNF-α, and IL-9 secretion, a higher proportion of central memory T (T<sub>CM</sub>) cells and Th9 cells, less expression of exhaustion markers, and robust proliferation capacity. Consequently, PSMA-BB-Z-GITRL CAR-T cells exhibited more potent anti-tumor activity against established solid tumors in vivo than PSMA-BB-Z CAR-T cells. The results of in vivo persistence experiment also indicated that PSMA-BB-Z-GITRL CAR-T cells exhibited much more retention in mouse blood, spleen, and tumor tissue than PSMA-BB-Z CAR-T cells 15 days after CAR-T cell therapy. In addition, PSMA-BB-Z-GITRL CAR-T cells produce higher levels of IFN-γ, TNF-α and IL-9 in mouse blood, exhibiting a higher proportion of T<sub>CM</sub> cells and a lower proportion of Treg cells compared to PSMA-BB-Z CAR-T cells. Our results demonstrate that the overexpression of GITRL has important implications for improving CAR-T cell-based human solid tumor immunotherapy.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.01.036","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells. Compared to PSMA-BB-Z CAR-T, PSMA-BB-Z-GITRL CAR-T cells have much more IFN-γ, TNF-α, and IL-9 secretion, a higher proportion of central memory T (TCM) cells and Th9 cells, less expression of exhaustion markers, and robust proliferation capacity. Consequently, PSMA-BB-Z-GITRL CAR-T cells exhibited more potent anti-tumor activity against established solid tumors in vivo than PSMA-BB-Z CAR-T cells. The results of in vivo persistence experiment also indicated that PSMA-BB-Z-GITRL CAR-T cells exhibited much more retention in mouse blood, spleen, and tumor tissue than PSMA-BB-Z CAR-T cells 15 days after CAR-T cell therapy. In addition, PSMA-BB-Z-GITRL CAR-T cells produce higher levels of IFN-γ, TNF-α and IL-9 in mouse blood, exhibiting a higher proportion of TCM cells and a lower proportion of Treg cells compared to PSMA-BB-Z CAR-T cells. Our results demonstrate that the overexpression of GITRL has important implications for improving CAR-T cell-based human solid tumor immunotherapy.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.