Single-Cell Proteomics Reveals Specific Cellular Subtypes in Cardiomyocytes Derived From Human iPSCs and Adult Hearts.

IF 5.5 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Molecular & Cellular Proteomics Pub Date : 2025-09-01 Epub Date: 2025-01-22 DOI:10.1016/j.mcpro.2025.100910
Lizhuo Ai, Aleksandra Binek, Vladimir Zhemkov, Jae Hyung Cho, Ali Haghani, Simion Kreimer, Edo Israely, Madelyn Arzt, Blandine Chazarin, Niveda Sundararaman, Jesse G Meyer, Arun Sharma, Eduardo Marbán, Clive N Svendsen, Jennifer E Van Eyk
{"title":"Single-Cell Proteomics Reveals Specific Cellular Subtypes in Cardiomyocytes Derived From Human iPSCs and Adult Hearts.","authors":"Lizhuo Ai, Aleksandra Binek, Vladimir Zhemkov, Jae Hyung Cho, Ali Haghani, Simion Kreimer, Edo Israely, Madelyn Arzt, Blandine Chazarin, Niveda Sundararaman, Jesse G Meyer, Arun Sharma, Eduardo Marbán, Clive N Svendsen, Jennifer E Van Eyk","doi":"10.1016/j.mcpro.2025.100910","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell proteomics was performed on human induced pluripotent stem cells (iPSCs), iPSC-derived cardiomyocytes, and adult cardiomyocytes. More than 700 proteins could be simultaneously measured in each cell revealing unique subpopulations. A subset of iPSCs expressed higher levels of Lin28a and Tra-1-60 towards the outer edge of cell colonies. In the cardiomyocytes, two distinct populations were found that exhibited complementary metabolic profiles. Cardiomyocytes from iPSCs showed a glycolysis profile while adult cardiomyocytes were enriched in proteins involved with fatty acid metabolism. Interestingly, rare single cells also co-expressed markers of both cardiac and neuronal lineages, suggesting there may be a novel hybrid cell type in the human heart.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100910"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445721/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100910","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell proteomics was performed on human induced pluripotent stem cells (iPSCs), iPSC-derived cardiomyocytes, and adult cardiomyocytes. More than 700 proteins could be simultaneously measured in each cell revealing unique subpopulations. A subset of iPSCs expressed higher levels of Lin28a and Tra-1-60 towards the outer edge of cell colonies. In the cardiomyocytes, two distinct populations were found that exhibited complementary metabolic profiles. Cardiomyocytes from iPSCs showed a glycolysis profile while adult cardiomyocytes were enriched in proteins involved with fatty acid metabolism. Interestingly, rare single cells also co-expressed markers of both cardiac and neuronal lineages, suggesting there may be a novel hybrid cell type in the human heart.

单细胞蛋白质组学揭示了来自人类iPSCs和成人心脏的心肌细胞的特定细胞亚型。
对人诱导多能干细胞(iPSCs)、ipsc衍生的心肌细胞和成人心肌细胞进行单细胞蛋白质组学研究。在每个细胞中可以同时测量超过700种蛋白质,揭示出独特的亚群。一组iPSCs在细胞集落外缘表达较高水平的Lin28a和Tra-1-60。在心肌细胞中,发现两个不同的种群表现出互补的代谢谱。来自iPSCs的心肌细胞显示糖酵解谱,而成人心肌细胞则富含脂肪酸代谢相关的蛋白质。有趣的是,罕见的单细胞也共同表达心脏和神经元谱系的标记,这表明人类心脏中可能存在一种新的杂交细胞类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信