Histopathology and proteomics are synergistic for high-grade serous ovarian cancer platinum response prediction.

IF 6.8 1区 医学 Q1 ONCOLOGY
Oz Kilim, Alex Olar, András Biricz, Lilla Madaras, Péter Pollner, Zoltán Szállási, Zsofia Sztupinszki, István Csabai
{"title":"Histopathology and proteomics are synergistic for high-grade serous ovarian cancer platinum response prediction.","authors":"Oz Kilim, Alex Olar, András Biricz, Lilla Madaras, Péter Pollner, Zoltán Szállási, Zsofia Sztupinszki, István Csabai","doi":"10.1038/s41698-025-00808-w","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E)-stained pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained whole slide images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts. This method outperforms the Homologous Recombination Deficiency (HRD) score in predicting platinum response and overall patient survival. Our study suggests that histology and proteomics contain complementary information about biological processes determining response to first line platinum treatment in HGSOC. This integrative approach has the potential to improve personalized treatment and provide insights into the therapeutic vulnerabilities of HGSOC.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"27"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00808-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E)-stained pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained whole slide images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts. This method outperforms the Homologous Recombination Deficiency (HRD) score in predicting platinum response and overall patient survival. Our study suggests that histology and proteomics contain complementary information about biological processes determining response to first line platinum treatment in HGSOC. This integrative approach has the potential to improve personalized treatment and provide insights into the therapeutic vulnerabilities of HGSOC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信