A Simple Machine Learning-Based Quantitative Structure-Activity Relationship Model for Predicting pIC50 Inhibition Values of FLT3 Tyrosine Kinase.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Pharmaceuticals Pub Date : 2025-01-14 DOI:10.3390/ph18010096
Jackson J Alcázar, Ignacio Sánchez, Cristian Merino, Bruno Monasterio, Gaspar Sajuria, Diego Miranda, Felipe Díaz, Paola R Campodónico
{"title":"A Simple Machine Learning-Based Quantitative Structure-Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine Kinase.","authors":"Jackson J Alcázar, Ignacio Sánchez, Cristian Merino, Bruno Monasterio, Gaspar Sajuria, Diego Miranda, Felipe Díaz, Paola R Campodónico","doi":"10.3390/ph18010096","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC<sub>50</sub> values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. <b>Methods:</b> Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting. Rigorous internal validation via leave-one-out and 10-fold cross-validation yielded Q2 values of 0.926 and 0.922, respectively, while external validation on 270 independent compounds resulted in an R<sup>2</sup> value of 0.941 with a standard deviation of 0.237. <b>Results:</b> Key molecular descriptors influencing the inhibitor potency were identified, thereby improving the interpretability of structural requirements. Additionally, a user-friendly computational tool was developed to enable rapid prediction of pIC<sub>50</sub> values and facilitate ligand-based virtual screening, leading to the identification of promising FLT3 inhibitors. <b>Conclusions:</b> These results represent a significant advancement in the field of FLT3 inhibitor discovery, offering a reliable, practical, and efficient approach for early-stage drug development, potentially accelerating the creation of targeted therapies for AML.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18010096","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC50 values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. Methods: Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting. Rigorous internal validation via leave-one-out and 10-fold cross-validation yielded Q2 values of 0.926 and 0.922, respectively, while external validation on 270 independent compounds resulted in an R2 value of 0.941 with a standard deviation of 0.237. Results: Key molecular descriptors influencing the inhibitor potency were identified, thereby improving the interpretability of structural requirements. Additionally, a user-friendly computational tool was developed to enable rapid prediction of pIC50 values and facilitate ligand-based virtual screening, leading to the identification of promising FLT3 inhibitors. Conclusions: These results represent a significant advancement in the field of FLT3 inhibitor discovery, offering a reliable, practical, and efficient approach for early-stage drug development, potentially accelerating the creation of targeted therapies for AML.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信