{"title":"Matching model with mechanism: Appropriate rodent models for studying various aspects of diabetes pathophysiology.","authors":"Lydia F Daniels Gatward, Aileen J F King","doi":"10.1016/bs.mcb.2024.05.003","DOIUrl":null,"url":null,"abstract":"<p><p>Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans. This includes pathogenesis specifically involving the beta cell, which is no longer considered to be innocuous in the development and progression of diabetes. In this chapter we explore rodent models that incorporate the initiating factors believed to be involved in type 1 diabetes (autoimmunity) and type 2 diabetes (insulin resistance), before further discussing rodents that can be used to model specific mechanisms involved in a failure of functional beta cell mass (impaired beta cell function and beta cell apoptosis). We segregate models of beta cell pathogenesis based on the beta cell stressor predominantly associated with phenotype, but it is important to consider that most rodent models will exhibit more than one beta cell stressor. Similarly, many models exhibit more than one pathogenic mechanism, for example the same model may show insulin resistance, impaired beta cell function as well as beta cell loss. This can complicate interpretation of results and should be considered, and the model thoroughly researched, during the experimental planning stage.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"192 ","pages":"39-68"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.05.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans. This includes pathogenesis specifically involving the beta cell, which is no longer considered to be innocuous in the development and progression of diabetes. In this chapter we explore rodent models that incorporate the initiating factors believed to be involved in type 1 diabetes (autoimmunity) and type 2 diabetes (insulin resistance), before further discussing rodents that can be used to model specific mechanisms involved in a failure of functional beta cell mass (impaired beta cell function and beta cell apoptosis). We segregate models of beta cell pathogenesis based on the beta cell stressor predominantly associated with phenotype, but it is important to consider that most rodent models will exhibit more than one beta cell stressor. Similarly, many models exhibit more than one pathogenic mechanism, for example the same model may show insulin resistance, impaired beta cell function as well as beta cell loss. This can complicate interpretation of results and should be considered, and the model thoroughly researched, during the experimental planning stage.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.