Reduced white matter integrity and disrupted brain network in children with type 2 and 3 spinal muscular atrophy.

IF 4.1 2区 医学 Q1 CLINICAL NEUROLOGY
Huirong Nie, Shasha Lan, Huan Wang, Pei Xiang, Mengzhen Yan, Yang Fan, Wanqing Shen, Yijuan Li, Wen Tang, Zhiyun Yang, Yujian Liang, Yingqian Chen
{"title":"Reduced white matter integrity and disrupted brain network in children with type 2 and 3 spinal muscular atrophy.","authors":"Huirong Nie, Shasha Lan, Huan Wang, Pei Xiang, Mengzhen Yan, Yang Fan, Wanqing Shen, Yijuan Li, Wen Tang, Zhiyun Yang, Yujian Liang, Yingqian Chen","doi":"10.1186/s11689-025-09592-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spinal muscular atrophy (SMA) is caused by reduced expression of survival motor neuron (SMN) protein. Previous studies indicated SMA causes not only lower motor neuron degeneration but also extensive brain involvement. This study aimed to investigate the changes of brain white matter and structural network using diffusion tensor imaging (DTI) in children with type 2 and 3 SMA.</p><p><strong>Methods: </strong>Forty-two type 2 and 3 pediatric SMA patients and 42 age- and gender-matched healthy controls (HC) were prospectively enrolled in this study. The tract-based spatial statistics (TBSS) was used to assess white matter integrity and the structural network properties were calculated based on DTI white matter fiber tracking and the graph theory approach. A partial correlation was performed to explore the relationship between white matter parameters and clinical characteristics.</p><p><strong>Results: </strong>In total, 42 patients (mean age, 10.86 ± 4.07 years; 23 men) were included. TBSS analysis revealed widespread white matter changes in SMA patients. The SMA patients showed changes in multiple small-world and network efficiency parameters. Compared to the HC group, SMA showed increased characteristic path length (L<sub>p</sub>), normalized clustering coefficient (γ), small-world characteristic (σ), and decreased global efficiency (E<sub>glob</sub>) (all p < 0.05). In the node properties, right supramarginal gyrus, right orbital part of superior frontal gyrus, right supplementary motor area, and left median cingulate and paracingulate gyri changed in SMA patients. A decreased axial diffusivity (AD) value was associated with lower Hammersmith Functional Motor Scale-Expanded scores (r = 0.45, p = 0.02), which means that the symptoms of SMA patients are more severe.</p><p><strong>Conclusions: </strong>This study found white matter and DTI-based brain network abnormalities in SMA patients, suggesting SMN protein deficiency may affect white matter development.</p>","PeriodicalId":16530,"journal":{"name":"Journal of Neurodevelopmental Disorders","volume":"17 1","pages":"3"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761759/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurodevelopmental Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s11689-025-09592-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Spinal muscular atrophy (SMA) is caused by reduced expression of survival motor neuron (SMN) protein. Previous studies indicated SMA causes not only lower motor neuron degeneration but also extensive brain involvement. This study aimed to investigate the changes of brain white matter and structural network using diffusion tensor imaging (DTI) in children with type 2 and 3 SMA.

Methods: Forty-two type 2 and 3 pediatric SMA patients and 42 age- and gender-matched healthy controls (HC) were prospectively enrolled in this study. The tract-based spatial statistics (TBSS) was used to assess white matter integrity and the structural network properties were calculated based on DTI white matter fiber tracking and the graph theory approach. A partial correlation was performed to explore the relationship between white matter parameters and clinical characteristics.

Results: In total, 42 patients (mean age, 10.86 ± 4.07 years; 23 men) were included. TBSS analysis revealed widespread white matter changes in SMA patients. The SMA patients showed changes in multiple small-world and network efficiency parameters. Compared to the HC group, SMA showed increased characteristic path length (Lp), normalized clustering coefficient (γ), small-world characteristic (σ), and decreased global efficiency (Eglob) (all p < 0.05). In the node properties, right supramarginal gyrus, right orbital part of superior frontal gyrus, right supplementary motor area, and left median cingulate and paracingulate gyri changed in SMA patients. A decreased axial diffusivity (AD) value was associated with lower Hammersmith Functional Motor Scale-Expanded scores (r = 0.45, p = 0.02), which means that the symptoms of SMA patients are more severe.

Conclusions: This study found white matter and DTI-based brain network abnormalities in SMA patients, suggesting SMN protein deficiency may affect white matter development.

2型和3型脊髓性肌萎缩症儿童白质完整性降低和脑网络破坏。
背景:脊髓性肌萎缩症(SMA)是由存活运动神经元(SMN)蛋白表达减少引起的。以往的研究表明,SMA不仅引起较低程度的运动神经元退化,而且引起广泛的大脑受累。本研究旨在应用弥散张量成像(DTI)研究2型和3型SMA患儿脑白质及结构网络的变化。方法:前瞻性纳入42例2型和3型儿童SMA患者和42例年龄和性别匹配的健康对照(HC)。采用基于束的空间统计(TBSS)方法评估脑白质完整性,并基于DTI脑白质纤维跟踪和图论方法计算脑白质结构网络特性。采用部分相关法探讨脑白质参数与临床特征之间的关系。结果:42例患者(平均年龄10.86±4.07岁;包括23名男性)。TBSS分析显示在SMA患者中广泛存在白质改变。SMA患者在多个小世界和网络效率参数上出现变化。与HC组相比,SMA组的特征路径长度(Lp)、归一化聚类系数(γ)、小世界特征(σ)增加,整体效率(Eglob)降低(均p < 0.05)。在淋巴结性质上,SMA患者的右侧边缘上回、右侧额上回眶部、右侧辅助运动区、左侧扣带中位回和副扣带回发生改变。轴向弥散度(AD)值降低与Hammersmith功能运动量表扩展评分较低相关(r = 0.45, p = 0.02),这意味着SMA患者的症状更严重。结论:本研究发现SMA患者脑白质和dti相关的脑网络异常,提示SMN蛋白缺乏可能影响脑白质发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
4.10%
发文量
58
审稿时长
>12 weeks
期刊介绍: Journal of Neurodevelopmental Disorders is an open access journal that integrates current, cutting-edge research across a number of disciplines, including neurobiology, genetics, cognitive neuroscience, psychiatry and psychology. The journal’s primary focus is on the pathogenesis of neurodevelopmental disorders including autism, fragile X syndrome, tuberous sclerosis, Turner Syndrome, 22q Deletion Syndrome, Prader-Willi and Angelman Syndrome, Williams syndrome, lysosomal storage diseases, dyslexia, specific language impairment and fetal alcohol syndrome. With the discovery of specific genes underlying neurodevelopmental syndromes, the emergence of powerful tools for studying neural circuitry, and the development of new approaches for exploring molecular mechanisms, interdisciplinary research on the pathogenesis of neurodevelopmental disorders is now increasingly common. Journal of Neurodevelopmental Disorders provides a unique venue for researchers interested in comparing and contrasting mechanisms and characteristics related to the pathogenesis of the full range of neurodevelopmental disorders, sharpening our understanding of the etiology and relevant phenotypes of each condition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信