Comprehensive analysis of GDF15 as a biomarker in primary mitochondrial myopathies.

IF 3.7 2区 生物学 Q2 ENDOCRINOLOGY & METABOLISM
Paloma Martín-Jimenez, Laura Bermejo-Guerrero, María Navarro-Riquelme, Pablo Serrano-Lorenzo, Rocío Garrido-Moraga, Aurelio Hernández-Laín, Ana Hernández-Voth, David Lora, Montserrat Morales, Joaquín Arenas, Alberto Blázquez, Miguel Ángel Martín, Cristina Domínguez-González
{"title":"Comprehensive analysis of GDF15 as a biomarker in primary mitochondrial myopathies.","authors":"Paloma Martín-Jimenez, Laura Bermejo-Guerrero, María Navarro-Riquelme, Pablo Serrano-Lorenzo, Rocío Garrido-Moraga, Aurelio Hernández-Laín, Ana Hernández-Voth, David Lora, Montserrat Morales, Joaquín Arenas, Alberto Blázquez, Miguel Ángel Martín, Cristina Domínguez-González","doi":"10.1016/j.ymgme.2025.109023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Mitochondrial diseases are caused by defects in oxidative phosphorylation, with primary mitochondrial myopathies (PMM) being a subset where muscle involvement is predominant. PMM presents symptoms ranging from exercise intolerance to progressive muscle weakness, often involving ocular muscles, leading to ptosis and progressive external ophthalmoplegia (PEO). PMM can be due to variants in mitochondrial or nuclear DNA. Growth differentiation factor 15 (GDF15) has been identified as an accurate biomarker for mitochondrial dysfunction. This study evaluates the utility of GDF15 as a biomarker for monitoring PMM.</p><p><strong>Methods: </strong>This observational study involved 50 adult PMM patients. Clinical data were collected alongside functional motor outcomes measured by the Motor Research Council scale, 6-min walk test, North Star Ambulatory Assessment, and 100-m run test (100MRT). Biomarkers including serum lactate, creatine kinase (CK), creatinine, and plasma GDF15 were assessed.</p><p><strong>Results: </strong>Patients exhibited diverse phenotypes, including exercise intolerance (8 %), progressive myopathy (22 %), isolated PEO (24 %), and PEO plus (42 %). Significant correlations were found among motor function tests, with 100MRT being particularly sensitive. Biomarker analysis showed elevated lactate in 32 %, elevated CK in 54 %, reduced creatinine in 76 %, and elevated GDF15 in 86 % of cases. GDF15 levels correlated with motor performance, lactate levels, and mtDNA mutation load in muscle. Creatinine levels were strongly linked to disease severity.</p><p><strong>Discussion: </strong>This study underscores the heterogeneity of PMM and the importance of reliable biomarkers. GDF15 was consistently elevated across all PMM phenotypes and genotypes, correlating well with disease severity. Reduced creatinine also emerged as a potential prognostic marker.</p>","PeriodicalId":18937,"journal":{"name":"Molecular genetics and metabolism","volume":"144 3","pages":"109023"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular genetics and metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ymgme.2025.109023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: Mitochondrial diseases are caused by defects in oxidative phosphorylation, with primary mitochondrial myopathies (PMM) being a subset where muscle involvement is predominant. PMM presents symptoms ranging from exercise intolerance to progressive muscle weakness, often involving ocular muscles, leading to ptosis and progressive external ophthalmoplegia (PEO). PMM can be due to variants in mitochondrial or nuclear DNA. Growth differentiation factor 15 (GDF15) has been identified as an accurate biomarker for mitochondrial dysfunction. This study evaluates the utility of GDF15 as a biomarker for monitoring PMM.

Methods: This observational study involved 50 adult PMM patients. Clinical data were collected alongside functional motor outcomes measured by the Motor Research Council scale, 6-min walk test, North Star Ambulatory Assessment, and 100-m run test (100MRT). Biomarkers including serum lactate, creatine kinase (CK), creatinine, and plasma GDF15 were assessed.

Results: Patients exhibited diverse phenotypes, including exercise intolerance (8 %), progressive myopathy (22 %), isolated PEO (24 %), and PEO plus (42 %). Significant correlations were found among motor function tests, with 100MRT being particularly sensitive. Biomarker analysis showed elevated lactate in 32 %, elevated CK in 54 %, reduced creatinine in 76 %, and elevated GDF15 in 86 % of cases. GDF15 levels correlated with motor performance, lactate levels, and mtDNA mutation load in muscle. Creatinine levels were strongly linked to disease severity.

Discussion: This study underscores the heterogeneity of PMM and the importance of reliable biomarkers. GDF15 was consistently elevated across all PMM phenotypes and genotypes, correlating well with disease severity. Reduced creatinine also emerged as a potential prognostic marker.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular genetics and metabolism
Molecular genetics and metabolism 生物-生化与分子生物学
CiteScore
5.90
自引率
7.90%
发文量
621
审稿时长
34 days
期刊介绍: Molecular Genetics and Metabolism contributes to the understanding of the metabolic and molecular basis of disease. This peer reviewed journal publishes articles describing investigations that use the tools of biochemical genetics and molecular genetics for studies of normal and disease states in humans and animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信