Missing Regulation Between Genetic Association and Transcriptional Abundance for Hypercholesterolemia Genes.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Genes Pub Date : 2025-01-15 DOI:10.3390/genes16010084
Aaron Hakim, Noah J Connally, Gavin R Schnitzler, Michael H Cho, Z Gordon Jiang, Shamil R Sunyaev, Rajat M Gupta
{"title":"Missing Regulation Between Genetic Association and Transcriptional Abundance for Hypercholesterolemia Genes.","authors":"Aaron Hakim, Noah J Connally, Gavin R Schnitzler, Michael H Cho, Z Gordon Jiang, Shamil R Sunyaev, Rajat M Gupta","doi":"10.3390/genes16010084","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Low-density lipoprotein cholesterol (LDL-C) is a well-established risk factor for cardiovascular disease, and it plays a causal role in the development of atherosclerosis. Genome-wide association studies (GWASs) have successfully identified hundreds of genetic variants associated with LDL-C. Most of these risk loci fall in non-coding regions of the genome, and it is unclear how these non-coding variants affect circulating lipid levels. One hypothesis is that genetically mediated variation in transcript abundance, detected via the analysis of expressed quantitative trait loci (eQTLs), is key to the biologic function of causal variants. Here, we investigate the hypothesis that non-coding GWAS risk variants affect the homeostatic expression of a nearby putatively causal gene for serum LDL-C levels. <b>Methods:</b> We establish a set of twenty-one expert-curated and validated genes implicated in hypercholesterolemia via dose-dependent pharmacologic modulation in human adults, for which the relevant tissue type has been established. We show that the expression of these LDL-C genes is impacted by eQTLs in relevant tissues and that there are significant genomic-risk loci in LDL-GWAS near these causal genes. We evaluate, using statistical colocalization, whether a single variant or set of variants in each genetic locus is responsible for the GWAS and eQTL signals. <b>Results:</b> Genome-wide association study results for serum LDL-C levels demonstrate that the 402 identified genomic-risk loci for LDL-C are highly enriched for known causal genes for LDL-C (OR 527, 95% CI 126-5376, <i>p</i> < 2.2 × 10<sup>-16</sup>). However, we find limited evidence for colocalization between GWAS signals near validated hypercholesterolemia genes and eQTLs in relevant tissues (colocalization rate of 26% at a locus-level colocalization probability > 50%). <b>Conclusions:</b> Our results highlight the complexity of genetic regulatory effects for causal hypercholesterolemia genes; we suggest that context-responsive eQTLs may explain the effects of non-coding GWAS hits that do not overlap with standard eQTLs.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16010084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Low-density lipoprotein cholesterol (LDL-C) is a well-established risk factor for cardiovascular disease, and it plays a causal role in the development of atherosclerosis. Genome-wide association studies (GWASs) have successfully identified hundreds of genetic variants associated with LDL-C. Most of these risk loci fall in non-coding regions of the genome, and it is unclear how these non-coding variants affect circulating lipid levels. One hypothesis is that genetically mediated variation in transcript abundance, detected via the analysis of expressed quantitative trait loci (eQTLs), is key to the biologic function of causal variants. Here, we investigate the hypothesis that non-coding GWAS risk variants affect the homeostatic expression of a nearby putatively causal gene for serum LDL-C levels. Methods: We establish a set of twenty-one expert-curated and validated genes implicated in hypercholesterolemia via dose-dependent pharmacologic modulation in human adults, for which the relevant tissue type has been established. We show that the expression of these LDL-C genes is impacted by eQTLs in relevant tissues and that there are significant genomic-risk loci in LDL-GWAS near these causal genes. We evaluate, using statistical colocalization, whether a single variant or set of variants in each genetic locus is responsible for the GWAS and eQTL signals. Results: Genome-wide association study results for serum LDL-C levels demonstrate that the 402 identified genomic-risk loci for LDL-C are highly enriched for known causal genes for LDL-C (OR 527, 95% CI 126-5376, p < 2.2 × 10-16). However, we find limited evidence for colocalization between GWAS signals near validated hypercholesterolemia genes and eQTLs in relevant tissues (colocalization rate of 26% at a locus-level colocalization probability > 50%). Conclusions: Our results highlight the complexity of genetic regulatory effects for causal hypercholesterolemia genes; we suggest that context-responsive eQTLs may explain the effects of non-coding GWAS hits that do not overlap with standard eQTLs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes
Genes GENETICS & HEREDITY-
CiteScore
5.20
自引率
5.70%
发文量
1975
审稿时长
22.94 days
期刊介绍: Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信