Identification and Functional Analysis of Candidate Genes Influencing Citrus Leaf Size Through Transcriptome and Coexpression Network Approaches.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Genes Pub Date : 2025-01-17 DOI:10.3390/genes16010097
Xiaoxiao Wu, Yuanhui Xiao, Ping Liu, Qiuling Pang, Chongling Deng, Cuina Fu, Haimeng Fang, Chuanwu Chen
{"title":"Identification and Functional Analysis of Candidate Genes Influencing Citrus Leaf Size Through Transcriptome and Coexpression Network Approaches.","authors":"Xiaoxiao Wu, Yuanhui Xiao, Ping Liu, Qiuling Pang, Chongling Deng, Cuina Fu, Haimeng Fang, Chuanwu Chen","doi":"10.3390/genes16010097","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Leaves are the main organs involved in photosynthesis. They capture light energy and promote gas exchange, and their size and shape affect yield. Identifying the regulatory networks and key genes that control citrus leaf size is essential for increasing citrus crop yield.</p><p><strong>Methods: </strong>In this study, transcriptome sequencing was performed on three leaf materials: the 'Cuimi' kumquat (Nor) variety and its leaf variants, larger-leaf (VarB) and smaller-leaf (VarS) varieties.</p><p><strong>Results: </strong>Correlation and principal component analyses revealed a relatively close correlation between Nor and VarS. A total of 7264 differentially expressed genes (DEGs), including 2374 transcription factors (TFs), were identified, and 254 DEGs were common among the three materials. GO and KEGG enrichment analyses revealed significant enrichment in glucose metabolism, cell wall composition, starch biosynthesis, and photosynthesis pathways. WGCNA identified three specific modules related to the different leaf sizes of these three citrus materials. Fifteen candidate genes related to leaf size, including three transcription factors, <i>Fh5g30470</i> (MYB), <i>Fh7g07360</i> (AP2/ERF), and <i>Fh5g02470</i> (SAP), were identified on the basis of connectivity and functional annotations.</p><p><strong>Conclusions: </strong>These findings provide a theoretical foundation for a deeper understanding of the molecular mechanisms underlying citrus leaf size and offer new genetic resources for the study of citrus leaf size.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765065/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16010097","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Leaves are the main organs involved in photosynthesis. They capture light energy and promote gas exchange, and their size and shape affect yield. Identifying the regulatory networks and key genes that control citrus leaf size is essential for increasing citrus crop yield.

Methods: In this study, transcriptome sequencing was performed on three leaf materials: the 'Cuimi' kumquat (Nor) variety and its leaf variants, larger-leaf (VarB) and smaller-leaf (VarS) varieties.

Results: Correlation and principal component analyses revealed a relatively close correlation between Nor and VarS. A total of 7264 differentially expressed genes (DEGs), including 2374 transcription factors (TFs), were identified, and 254 DEGs were common among the three materials. GO and KEGG enrichment analyses revealed significant enrichment in glucose metabolism, cell wall composition, starch biosynthesis, and photosynthesis pathways. WGCNA identified three specific modules related to the different leaf sizes of these three citrus materials. Fifteen candidate genes related to leaf size, including three transcription factors, Fh5g30470 (MYB), Fh7g07360 (AP2/ERF), and Fh5g02470 (SAP), were identified on the basis of connectivity and functional annotations.

Conclusions: These findings provide a theoretical foundation for a deeper understanding of the molecular mechanisms underlying citrus leaf size and offer new genetic resources for the study of citrus leaf size.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes
Genes GENETICS & HEREDITY-
CiteScore
5.20
自引率
5.70%
发文量
1975
审稿时长
22.94 days
期刊介绍: Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信