Evolutionary and Structural Insights into the RNA Polymerase I A34 Protein Family: A Focus on Intrinsic Disorder and Phase Separation.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Genes Pub Date : 2025-01-07 DOI:10.3390/genes16010061
Bruce A Knutson, Lawrence I Rothblum
{"title":"Evolutionary and Structural Insights into the RNA Polymerase I A34 Protein Family: A Focus on Intrinsic Disorder and Phase Separation.","authors":"Bruce A Knutson, Lawrence I Rothblum","doi":"10.3390/genes16010061","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Eukaryotic RNA polymerase I consists of 12 or 11 core subunits and three dissociable subunits, Rrn3, A34, and A49. The A34 and A49 subunits exist as a heterodimer. In silico analysis of the A34 family of transcription factors demonstrates a commonly shared domain structure despite a lack of sequence conservation, as well as N-terminal and C-terminal disordered regions. The common structure of A34 has an N-terminal disordered region followed by a dimerization domain that, in conjunction with A49, contributes to a fold that resembles the TFIIF core. This in turn is followed by a short region that cryo-EM demonstrates resembles an arm and intimately interacts with the PolR1A, PolR1B, and PolR1C subunits of Pol I.</p><p><strong>Analyses: </strong>This Pol I-binding domain is then followed by a region that is not resolved in cryo-EM and is predicted to be intrinsically disordered. Interestingly, the size/length of this disordered structure increases from yeast to humans, and is composed of repeats with unique sequence and biochemical features that also increase in number. Further analyses of the A34 CTD (carboxy-terminal domain) indicate that it has a high probability of undergoing liquid-liquid phase separation.</p><p><strong>Conclusions: </strong>We suggest that this intrinsically disordered domain found in the A34 family of Pol I transcription factors serves a function similar to the CTD of the PolR2A subunit in coordinating transcription initiation and elongation and RNA processing. Lastly, we propose that dynamic acetylation of PAF49 may regulate interactions of the intrinsically disordered CTD and thereby specify liquid-liquid phase separations. Overall, we propose a new paradigm for a repeat-containing CTD in Pol I transcription.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765491/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16010061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Eukaryotic RNA polymerase I consists of 12 or 11 core subunits and three dissociable subunits, Rrn3, A34, and A49. The A34 and A49 subunits exist as a heterodimer. In silico analysis of the A34 family of transcription factors demonstrates a commonly shared domain structure despite a lack of sequence conservation, as well as N-terminal and C-terminal disordered regions. The common structure of A34 has an N-terminal disordered region followed by a dimerization domain that, in conjunction with A49, contributes to a fold that resembles the TFIIF core. This in turn is followed by a short region that cryo-EM demonstrates resembles an arm and intimately interacts with the PolR1A, PolR1B, and PolR1C subunits of Pol I.

Analyses: This Pol I-binding domain is then followed by a region that is not resolved in cryo-EM and is predicted to be intrinsically disordered. Interestingly, the size/length of this disordered structure increases from yeast to humans, and is composed of repeats with unique sequence and biochemical features that also increase in number. Further analyses of the A34 CTD (carboxy-terminal domain) indicate that it has a high probability of undergoing liquid-liquid phase separation.

Conclusions: We suggest that this intrinsically disordered domain found in the A34 family of Pol I transcription factors serves a function similar to the CTD of the PolR2A subunit in coordinating transcription initiation and elongation and RNA processing. Lastly, we propose that dynamic acetylation of PAF49 may regulate interactions of the intrinsically disordered CTD and thereby specify liquid-liquid phase separations. Overall, we propose a new paradigm for a repeat-containing CTD in Pol I transcription.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes
Genes GENETICS & HEREDITY-
CiteScore
5.20
自引率
5.70%
发文量
1975
审稿时长
22.94 days
期刊介绍: Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信