Single-cell transcriptome reveals three types of adipocytes associated with intramuscular fat content in pigs.

IF 3.4 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jing Xu, Hao Peng, Renzhuo Kuang, Zheyu Han, Honghong Zhou, Mingyang Hu, YaPing Guo, Zhixiang Xu, DaoyuanWang, Ruixian Ma, Daisuke Takao, Mengjin Zhu, Fenge Li, Yunxia Zhao
{"title":"Single-cell transcriptome reveals three types of adipocytes associated with intramuscular fat content in pigs.","authors":"Jing Xu, Hao Peng, Renzhuo Kuang, Zheyu Han, Honghong Zhou, Mingyang Hu, YaPing Guo, Zhixiang Xu, DaoyuanWang, Ruixian Ma, Daisuke Takao, Mengjin Zhu, Fenge Li, Yunxia Zhao","doi":"10.1016/j.ygeno.2025.110998","DOIUrl":null,"url":null,"abstract":"<p><p>Intramuscular fat is an essential component of muscle tissue, and understanding its contribution to skeletal muscle fat infiltration and meat quality, together with the underlying genetic mechanisms, is a major topic in pig husbandry. However, the composition of cell types and gene expression profiles essential for this purpose remain largely unexplored. Here, we performed single-cell transcriptome analysis on muscle tissue from adult pigs and identified 15 cell types, including three previously uncharacterized types of adipocytes: Adipocyte 1, Adipocyte 2, and Aregs. Phenotypic analysis showed their proportions correlated closely with intramuscular fat content. Based on integrated analysis of ATAC-seq with RNA-seq data, Adipocyte 1 and Aregs have gene expression profiles and transcription factor (TF) motif enrichment typical of adipocytes. On the other hand, myogenic TF motifs were enriched in marker gene promoters in Adipocyte 2, suggesting that these cells originate from muscle cells. Moreover, the marker gene promoters and lineage-specific TF expression in these three adipocyte types were conserved between pigs and humans. These findings provide deep insights towards understanding the complexity of mammalian intramuscular adipocyte types and the gene regulation underlying their organization and function.</p>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":" ","pages":"110998"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ygeno.2025.110998","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intramuscular fat is an essential component of muscle tissue, and understanding its contribution to skeletal muscle fat infiltration and meat quality, together with the underlying genetic mechanisms, is a major topic in pig husbandry. However, the composition of cell types and gene expression profiles essential for this purpose remain largely unexplored. Here, we performed single-cell transcriptome analysis on muscle tissue from adult pigs and identified 15 cell types, including three previously uncharacterized types of adipocytes: Adipocyte 1, Adipocyte 2, and Aregs. Phenotypic analysis showed their proportions correlated closely with intramuscular fat content. Based on integrated analysis of ATAC-seq with RNA-seq data, Adipocyte 1 and Aregs have gene expression profiles and transcription factor (TF) motif enrichment typical of adipocytes. On the other hand, myogenic TF motifs were enriched in marker gene promoters in Adipocyte 2, suggesting that these cells originate from muscle cells. Moreover, the marker gene promoters and lineage-specific TF expression in these three adipocyte types were conserved between pigs and humans. These findings provide deep insights towards understanding the complexity of mammalian intramuscular adipocyte types and the gene regulation underlying their organization and function.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genomics
Genomics 生物-生物工程与应用微生物
CiteScore
9.60
自引率
2.30%
发文量
260
审稿时长
60 days
期刊介绍: Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation. As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信