Single-cell transcriptome analysis revealing mechanotransduction via the Hippo/YAP pathway in promoting fibroblast-to-myofibroblast transition and idiopathic pulmonary fibrosis development

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY
Gene Pub Date : 2025-01-22 DOI:10.1016/j.gene.2025.149271
Jiaqi Lu, Zhenhua Wang, Liguo Zhang
{"title":"Single-cell transcriptome analysis revealing mechanotransduction via the Hippo/YAP pathway in promoting fibroblast-to-myofibroblast transition and idiopathic pulmonary fibrosis development","authors":"Jiaqi Lu,&nbsp;Zhenhua Wang,&nbsp;Liguo Zhang","doi":"10.1016/j.gene.2025.149271","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal interstitial lung disease, characterized by excessive extracellular matrix (ECM) secretion that disrupts normal alveolar structure. This study aims to explore the potential molecular mechanisms underlying the promotion of IPF development.</div></div><div><h3>Methods</h3><div>Firstly, we compared the transcriptome and single-cell sequencing data from lung tissue samples of patients with IPF and healthy individuals. Subsequently, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on the differentially expressed genes (DEGs). Furthermore, we employed sodium alginate hydrogels with varying degrees of crosslinking to provide differential mechanical stress, mimicking the mechanical microenvironment <em>in vivo</em> during lung fibrosis. On this basis, we examined cytoskeletal remodeling in fibroblasts MRC-5, mRNA expression of multiple related genes, immunofluorescence localization, and cellular proliferation capacity.</div></div><div><h3>Results</h3><div>Bioinformatics analysis revealed a series of DEGs associated with IPF. Further functional and pathway enrichment analyses indicated that these DEGs were primarily enriched in ECM-related biological processes. Single-cell sequencing data revealed that fibroblasts and myofibroblasts are the main contributors to excessive ECM secretion and suggested activation of mechanotransduction and the Hippo/YAP signaling pathway in myofibroblasts. Cellular experiments demonstrated that sodium alginate hydrogels with different stiffness can simulate different mechanical stress environments, thereby affecting cytoskeletal rearrangement and Hippo/YAP pathway activity in MRC-5 lung fibroblasts. Notably, high levels of mechanical stress promoted YAP nuclear translocation, increased expression of type I collagen and α-SMA, and enhanced proliferative capacity. Additionally, we also found that fibroblasts primarily participate in mechanotransduction through the Rho/ROCK and Integrin/FAK pathways under high mechanical stress conditions, ultimately upregulating the gene expression of <em>CCNE1/2</em>, <em>CTGF</em>, and <em>FGF1</em>.</div></div><div><h3>Conclusion</h3><div>Our study uncovers the crucial role of cytoskeletal mechanotransduction in myofibroblast transformation and IPF development through activation of the Hippo/YAP pathway, providing new insights into understanding the pathogenesis of IPF.</div></div>","PeriodicalId":12499,"journal":{"name":"Gene","volume":"943 ","pages":"Article 149271"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378111925000599","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal interstitial lung disease, characterized by excessive extracellular matrix (ECM) secretion that disrupts normal alveolar structure. This study aims to explore the potential molecular mechanisms underlying the promotion of IPF development.

Methods

Firstly, we compared the transcriptome and single-cell sequencing data from lung tissue samples of patients with IPF and healthy individuals. Subsequently, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on the differentially expressed genes (DEGs). Furthermore, we employed sodium alginate hydrogels with varying degrees of crosslinking to provide differential mechanical stress, mimicking the mechanical microenvironment in vivo during lung fibrosis. On this basis, we examined cytoskeletal remodeling in fibroblasts MRC-5, mRNA expression of multiple related genes, immunofluorescence localization, and cellular proliferation capacity.

Results

Bioinformatics analysis revealed a series of DEGs associated with IPF. Further functional and pathway enrichment analyses indicated that these DEGs were primarily enriched in ECM-related biological processes. Single-cell sequencing data revealed that fibroblasts and myofibroblasts are the main contributors to excessive ECM secretion and suggested activation of mechanotransduction and the Hippo/YAP signaling pathway in myofibroblasts. Cellular experiments demonstrated that sodium alginate hydrogels with different stiffness can simulate different mechanical stress environments, thereby affecting cytoskeletal rearrangement and Hippo/YAP pathway activity in MRC-5 lung fibroblasts. Notably, high levels of mechanical stress promoted YAP nuclear translocation, increased expression of type I collagen and α-SMA, and enhanced proliferative capacity. Additionally, we also found that fibroblasts primarily participate in mechanotransduction through the Rho/ROCK and Integrin/FAK pathways under high mechanical stress conditions, ultimately upregulating the gene expression of CCNE1/2, CTGF, and FGF1.

Conclusion

Our study uncovers the crucial role of cytoskeletal mechanotransduction in myofibroblast transformation and IPF development through activation of the Hippo/YAP pathway, providing new insights into understanding the pathogenesis of IPF.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gene
Gene 生物-遗传学
CiteScore
6.10
自引率
2.90%
发文量
718
审稿时长
42 days
期刊介绍: Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信