Isoferulic Acid Inhibits Proliferation and Migration of Pancreatic Cancer Cells, and Promotes the Apoptosis of Pancreatic Cancer Cells in a Mitochondria-Dependent Manner Through Inhibiting NF-κB Signalling Pathway
Suqin Sun, Rong Fan, Li Chang, Lei Gao, Chunting Liu, Dongying Liu, Shiyu Niu
{"title":"Isoferulic Acid Inhibits Proliferation and Migration of Pancreatic Cancer Cells, and Promotes the Apoptosis of Pancreatic Cancer Cells in a Mitochondria-Dependent Manner Through Inhibiting NF-κB Signalling Pathway","authors":"Suqin Sun, Rong Fan, Li Chang, Lei Gao, Chunting Liu, Dongying Liu, Shiyu Niu","doi":"10.1111/1440-1681.70025","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the “king of cancer”, was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.25, 12.5, 25 μM), and nude mice injected with pancreatic cancer cells were received IA at doses of 7.5 mg/kg/day or 30 mg/kg/day by oral administration. CCK8, Annexin V-FITC/propidium iodide (PI) double staining and TUNEL assay were conducted to evaluate the cell viability and apoptosis. Hoechst staining and comet assay was employed to measure DNA damage. Mitochondrial membrane potential (MMP) analysis was carried out to explain the mitochondrial damage. EdU and wound healing assay were performed for cell proliferation and migration detection. Immunofluorescence and western blot were used to explore the mechanism. We found that IA reduced cell viability and induced apoptosis, as evidenced by an increase in Annexin V-FITC<sup>+</sup>PI<sup>−</sup> and Annexin V-FITC<sup>+</sup>PI<sup>+</sup> cell populations, brighter TUNEL and Hoechst staining, and more percentage of tail DNA. Furthermore, IA decreased MMP and changed levels of apoptosis-related proteins. The cell proliferation and migration were inhibited by IA treatment. Mechanically, IA downregulated the phosphorylation of IĸBα and inhibited p65 nuclear translocation, consequently suppressing NF-κB pathway. In general, IA suppressed the cell proliferation and migration, and caused apoptosis of pancreatic cancer cells in a mitochondria-dependent manner through blocking NF-κB signalling pathway, indicating that IA may be a potential therapeutic strategy for pancreatic cancer.</p>\n </div>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"52 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the “king of cancer”, was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.25, 12.5, 25 μM), and nude mice injected with pancreatic cancer cells were received IA at doses of 7.5 mg/kg/day or 30 mg/kg/day by oral administration. CCK8, Annexin V-FITC/propidium iodide (PI) double staining and TUNEL assay were conducted to evaluate the cell viability and apoptosis. Hoechst staining and comet assay was employed to measure DNA damage. Mitochondrial membrane potential (MMP) analysis was carried out to explain the mitochondrial damage. EdU and wound healing assay were performed for cell proliferation and migration detection. Immunofluorescence and western blot were used to explore the mechanism. We found that IA reduced cell viability and induced apoptosis, as evidenced by an increase in Annexin V-FITC+PI− and Annexin V-FITC+PI+ cell populations, brighter TUNEL and Hoechst staining, and more percentage of tail DNA. Furthermore, IA decreased MMP and changed levels of apoptosis-related proteins. The cell proliferation and migration were inhibited by IA treatment. Mechanically, IA downregulated the phosphorylation of IĸBα and inhibited p65 nuclear translocation, consequently suppressing NF-κB pathway. In general, IA suppressed the cell proliferation and migration, and caused apoptosis of pancreatic cancer cells in a mitochondria-dependent manner through blocking NF-κB signalling pathway, indicating that IA may be a potential therapeutic strategy for pancreatic cancer.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.