Severity grading of hypertensive retinopathy using hybrid deep learning architecture

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Supriya Suman , Anil Kumar Tiwari , Shreya Sachan , Kuldeep Singh , Seema Meena , Sakshi Kumar
{"title":"Severity grading of hypertensive retinopathy using hybrid deep learning architecture","authors":"Supriya Suman ,&nbsp;Anil Kumar Tiwari ,&nbsp;Shreya Sachan ,&nbsp;Kuldeep Singh ,&nbsp;Seema Meena ,&nbsp;Sakshi Kumar","doi":"10.1016/j.cmpb.2025.108585","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objectives:</h3><div>Hypertensive Retinopathy (HR) is a retinal manifestation resulting from persistently elevated blood pressure. Severity grading of HR is essential for patient risk stratification, effective management, progression monitoring, timely intervention, and minimizing the risk of vision impairment. Computer-aided diagnosis and artificial intelligence (AI) systems play vital roles in the diagnosis and grading of HR. Over the years, very limited research has been conducted for the grading of HR. Nevertheless, there are no publicly available datasets for HR grading. Moreover, one of the key challenges observed is high-class imbalance.</div></div><div><h3>Methods:</h3><div>To address these issues, in this paper, we develop “HRSG: Expert-Annotated Hypertensive Retinopathy Severity Grading” dataset, classifying HR severity into four distinct classes: normal, mild, moderate, and severe. Further, to enhance the grading performance on limited datasets, this paper introduces a novel hybrid architecture that combines the strengths of pretrained ResNet-50 via transfer learning, and a modified Vision Transformer (ViT) architecture enhanced with a combination of global self-attention and locality self-attention mechanisms. The locality self-attention addresses the common issue of a lack of inductive bias in ViT architecture. This architecture effectively captures both local and global contextual information, resulting in a robust and resilient classification model. To overcome class imbalance, Decouple Representation and Classifier (DRC) - based training approach is proposed. This method improves the model’s ability to learn effective features while preserving the original dataset’s distribution, leading to better diagnostic accuracy.</div></div><div><h3>Results:</h3><div>Performance evaluation results show the competence of the proposed method in accurately grading the severity of HR. The proposed method achieved an average accuracy of 0.9688, sensitivity of 0.9435, specificity of 0.9766, F1-score of 0.9442, and precision of 0.9474. The comparative results indicate that the proposed method outperforms existing HR methods, state-of-the-art CNN models, and baseline pretrained ViT models. Additionally, we compared our method with a CNNViT model, which combines a shallow CNN architecture with 3 convolution blocks consisting of a convolution layer, a batch normalization layer, a max pooling layer, and lightweight ViT architecture, due to limited datasets. In comparison with the CNNViT, the proposed method achieved superior performance, demonstrating its effectiveness.</div></div><div><h3>Conclusion:</h3><div>The experimental results demonstrate the efficacy of the proposed method in accurately grading HR severity.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"261 ","pages":"Article 108585"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000021","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objectives:

Hypertensive Retinopathy (HR) is a retinal manifestation resulting from persistently elevated blood pressure. Severity grading of HR is essential for patient risk stratification, effective management, progression monitoring, timely intervention, and minimizing the risk of vision impairment. Computer-aided diagnosis and artificial intelligence (AI) systems play vital roles in the diagnosis and grading of HR. Over the years, very limited research has been conducted for the grading of HR. Nevertheless, there are no publicly available datasets for HR grading. Moreover, one of the key challenges observed is high-class imbalance.

Methods:

To address these issues, in this paper, we develop “HRSG: Expert-Annotated Hypertensive Retinopathy Severity Grading” dataset, classifying HR severity into four distinct classes: normal, mild, moderate, and severe. Further, to enhance the grading performance on limited datasets, this paper introduces a novel hybrid architecture that combines the strengths of pretrained ResNet-50 via transfer learning, and a modified Vision Transformer (ViT) architecture enhanced with a combination of global self-attention and locality self-attention mechanisms. The locality self-attention addresses the common issue of a lack of inductive bias in ViT architecture. This architecture effectively captures both local and global contextual information, resulting in a robust and resilient classification model. To overcome class imbalance, Decouple Representation and Classifier (DRC) - based training approach is proposed. This method improves the model’s ability to learn effective features while preserving the original dataset’s distribution, leading to better diagnostic accuracy.

Results:

Performance evaluation results show the competence of the proposed method in accurately grading the severity of HR. The proposed method achieved an average accuracy of 0.9688, sensitivity of 0.9435, specificity of 0.9766, F1-score of 0.9442, and precision of 0.9474. The comparative results indicate that the proposed method outperforms existing HR methods, state-of-the-art CNN models, and baseline pretrained ViT models. Additionally, we compared our method with a CNNViT model, which combines a shallow CNN architecture with 3 convolution blocks consisting of a convolution layer, a batch normalization layer, a max pooling layer, and lightweight ViT architecture, due to limited datasets. In comparison with the CNNViT, the proposed method achieved superior performance, demonstrating its effectiveness.

Conclusion:

The experimental results demonstrate the efficacy of the proposed method in accurately grading HR severity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信