Alexander Greenshields-Watson , Odysseas Vavourakis , Fabian C. Spoendlin , Matteo Cagiada , Charlotte M. Deane
{"title":"Challenges and compromises: Predicting unbound antibody structures with deep learning","authors":"Alexander Greenshields-Watson , Odysseas Vavourakis , Fabian C. Spoendlin , Matteo Cagiada , Charlotte M. Deane","doi":"10.1016/j.sbi.2025.102983","DOIUrl":null,"url":null,"abstract":"<div><div>Therapeutic antibodies are manufactured, stored and administered in the free state; this makes understanding the unbound form key to designing and improving development pipelines. Prediction of unbound antibodies is challenging, specifically modelling of the CDRH3 loop, where inaccuracies are potentially worse due to a bias in structural data towards antibody-antigen complexes. This class imbalance provides a challenge for deep learning models trained on this data, potentially limiting generalisation to unbound forms.</div><div>Here we discuss the importance of unbound structures in antibody development pipelines. We explore how the latest generation of structure predictors can provide new insights and assess how conformational heterogeneity may influence binding kinetics. We hypothesise that generative models may address some of these issues. While prediction of antibodies in complex is essential, we should not ignore the need for progress in modelling the unbound form.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"90 ","pages":"Article 102983"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic antibodies are manufactured, stored and administered in the free state; this makes understanding the unbound form key to designing and improving development pipelines. Prediction of unbound antibodies is challenging, specifically modelling of the CDRH3 loop, where inaccuracies are potentially worse due to a bias in structural data towards antibody-antigen complexes. This class imbalance provides a challenge for deep learning models trained on this data, potentially limiting generalisation to unbound forms.
Here we discuss the importance of unbound structures in antibody development pipelines. We explore how the latest generation of structure predictors can provide new insights and assess how conformational heterogeneity may influence binding kinetics. We hypothesise that generative models may address some of these issues. While prediction of antibodies in complex is essential, we should not ignore the need for progress in modelling the unbound form.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation