Dihydromyricetin Protects Against Hypoxia/Reoxygenation Injury in Cardiomyocytes by Activating miR-34a-Mediated Notch1 Pathway.

IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Yanyang Li, Mofan Li
{"title":"Dihydromyricetin Protects Against Hypoxia/Reoxygenation Injury in Cardiomyocytes by Activating miR-34a-Mediated Notch1 Pathway.","authors":"Yanyang Li, Mofan Li","doi":"10.1007/s12012-025-09959-5","DOIUrl":null,"url":null,"abstract":"<p><p>Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes. The results showed that Dih protected cardiomyocytes against H/R-induced apoptosis, as proved by improved cell viability and decreased lactate dehydrogenase (LDH) release, cell apoptosis percentage, and caspase-3/7 activity. H/R-induced oxidative stress in cardiomyocytes was also prevented by Dih with increased activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), and decreased levels of malondialdehyde (MDA) and reactive oxygen species (ROS). Treatment with Dih prevented H/R-induced increase in the activities of myocardial enzymes aspartate aminotransferase (AST), creatine kinase-MB (CK-MB), and creatine kinase (CK). miR-34a expression was upregulated after H/R stimulation, which could be attenuated by Dih pretreatment. Besides, miR-34a overexpression attenuated the protective effects of Dih against H/R-caused increase in apoptosis, oxidative stress, and myocardial enzyme activities. Next, we demonstrated that Notch1 was a target molecule of miR-34a. Notch1 overexpression reversed the role of miR-34a in regulating the cardioprotective effect of Dih on H/R injury. These observations indicated that the cardioprotective effect of Dih against H/R injury was mediated by the miR-34a/Notch1 signaling. Dih may be a candidate agent for improving the clinical efficacy of cardiac ischemia/reperfusion injury treatment.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-025-09959-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes. The results showed that Dih protected cardiomyocytes against H/R-induced apoptosis, as proved by improved cell viability and decreased lactate dehydrogenase (LDH) release, cell apoptosis percentage, and caspase-3/7 activity. H/R-induced oxidative stress in cardiomyocytes was also prevented by Dih with increased activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), and decreased levels of malondialdehyde (MDA) and reactive oxygen species (ROS). Treatment with Dih prevented H/R-induced increase in the activities of myocardial enzymes aspartate aminotransferase (AST), creatine kinase-MB (CK-MB), and creatine kinase (CK). miR-34a expression was upregulated after H/R stimulation, which could be attenuated by Dih pretreatment. Besides, miR-34a overexpression attenuated the protective effects of Dih against H/R-caused increase in apoptosis, oxidative stress, and myocardial enzyme activities. Next, we demonstrated that Notch1 was a target molecule of miR-34a. Notch1 overexpression reversed the role of miR-34a in regulating the cardioprotective effect of Dih on H/R injury. These observations indicated that the cardioprotective effect of Dih against H/R injury was mediated by the miR-34a/Notch1 signaling. Dih may be a candidate agent for improving the clinical efficacy of cardiac ischemia/reperfusion injury treatment.

二氢杨梅素通过激活 miR-34a 介导的 Notch1 通路保护心肌细胞免受缺氧/再氧损伤
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Toxicology
Cardiovascular Toxicology 医学-毒理学
CiteScore
6.60
自引率
3.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信