Comprehensive Overview of Ketone Bodies in Cancer Metabolism: Mechanisms and Application.

IF 3.9 3区 工程技术 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ziyuan Liang, Lixian Deng, Xiaoying Zhou, Zhe Zhang, Weilin Zhao
{"title":"Comprehensive Overview of Ketone Bodies in Cancer Metabolism: Mechanisms and Application.","authors":"Ziyuan Liang, Lixian Deng, Xiaoying Zhou, Zhe Zhang, Weilin Zhao","doi":"10.3390/biomedicines13010210","DOIUrl":null,"url":null,"abstract":"<p><p>Reprogramming energy metabolism is pivotal to tumor development. Ketone bodies (KBs), which are generated during lipid metabolism, are fundamental bioactive molecules that can be modulated to satisfy the escalating metabolic needs of cancer cells. At present, a burgeoning body of research is concentrating on the metabolism of KBs within tumors, investigating their roles as signaling mediators, drivers of post-translational modifications, and regulators of inflammation and oxidative stress. The ketogenic diet (KD) may enhance the sensitivity of various cancers to standard therapies, such as chemotherapy and radiotherapy, by exploiting the reprogrammed metabolism of cancer cells and shifting the metabolic state from glucose reliance to KB utilization, rendering it a promising candidate for adjunct cancer therapy. Nonetheless, numerous questions remain regarding the expression of key metabolic genes across different tumors, the regulation of their activities, and the impact of individual KBs on various tumor types. Further investigation is imperative to resolve the conflicting data concerning KB synthesis and functionality within tumors. This review aims to encapsulate the intricate roles of KBs in cancer metabolism, elucidating a comprehensive grasp of their mechanisms and highlighting emerging clinical applications, thereby setting the stage for future investigations into their therapeutic potential.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760447/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13010210","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Reprogramming energy metabolism is pivotal to tumor development. Ketone bodies (KBs), which are generated during lipid metabolism, are fundamental bioactive molecules that can be modulated to satisfy the escalating metabolic needs of cancer cells. At present, a burgeoning body of research is concentrating on the metabolism of KBs within tumors, investigating their roles as signaling mediators, drivers of post-translational modifications, and regulators of inflammation and oxidative stress. The ketogenic diet (KD) may enhance the sensitivity of various cancers to standard therapies, such as chemotherapy and radiotherapy, by exploiting the reprogrammed metabolism of cancer cells and shifting the metabolic state from glucose reliance to KB utilization, rendering it a promising candidate for adjunct cancer therapy. Nonetheless, numerous questions remain regarding the expression of key metabolic genes across different tumors, the regulation of their activities, and the impact of individual KBs on various tumor types. Further investigation is imperative to resolve the conflicting data concerning KB synthesis and functionality within tumors. This review aims to encapsulate the intricate roles of KBs in cancer metabolism, elucidating a comprehensive grasp of their mechanisms and highlighting emerging clinical applications, thereby setting the stage for future investigations into their therapeutic potential.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedicines
Biomedicines Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍: Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信