Generative networks for spatio-temporal gap filling of Sentinel-2 reflectances

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Maria Gonzalez-Calabuig, Miguel-Ángel Fernández-Torres, Gustau Camps-Valls
{"title":"Generative networks for spatio-temporal gap filling of Sentinel-2 reflectances","authors":"Maria Gonzalez-Calabuig,&nbsp;Miguel-Ángel Fernández-Torres,&nbsp;Gustau Camps-Valls","doi":"10.1016/j.isprsjprs.2025.01.016","DOIUrl":null,"url":null,"abstract":"<div><div>Earth observation from satellite sensors offers the possibility to monitor natural ecosystems by deriving spatially explicit and temporally resolved biogeophysical parameters. Optical remote sensing, however, suffers from missing data mainly due to the presence of clouds, sensor malfunctioning, and atmospheric conditions. This study proposes a novel deep learning architecture to address gap filling of satellite reflectances, more precisely the visible and near-infrared bands, and illustrates its performance at high-resolution Sentinel-2 data. We introduce GANFilling, a generative adversarial network capable of sequence-to-sequence translation, which comprises convolutional long short-term memory layers to effectively exploit complete dependencies in space–time series data. We focus on Europe and evaluate the method’s performance <em>quantitatively</em> (through distortion and perceptual metrics) and <em>qualitatively</em> (via visual inspection and visual quality metrics). Quantitatively, our model offers the best trade-off between denoising corrupted data and preserving noise-free information, underscoring the importance of considering multiple metrics jointly when assessing gap filling tasks. Qualitatively, it successfully deals with various noise sources, such as clouds and missing data, constituting a robust solution to multiple scenarios and settings. We also illustrate and quantify the quality of the generated product in the relevant downstream application of vegetation greenness forecasting, where using GANFilling enhances forecasting in approximately 70% of the considered regions in Europe. This research contributes to underlining the utility of deep learning for Earth observation data, which allows for improved spatially and temporally resolved monitoring of the Earth surface.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"220 ","pages":"Pages 637-648"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625000152","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Earth observation from satellite sensors offers the possibility to monitor natural ecosystems by deriving spatially explicit and temporally resolved biogeophysical parameters. Optical remote sensing, however, suffers from missing data mainly due to the presence of clouds, sensor malfunctioning, and atmospheric conditions. This study proposes a novel deep learning architecture to address gap filling of satellite reflectances, more precisely the visible and near-infrared bands, and illustrates its performance at high-resolution Sentinel-2 data. We introduce GANFilling, a generative adversarial network capable of sequence-to-sequence translation, which comprises convolutional long short-term memory layers to effectively exploit complete dependencies in space–time series data. We focus on Europe and evaluate the method’s performance quantitatively (through distortion and perceptual metrics) and qualitatively (via visual inspection and visual quality metrics). Quantitatively, our model offers the best trade-off between denoising corrupted data and preserving noise-free information, underscoring the importance of considering multiple metrics jointly when assessing gap filling tasks. Qualitatively, it successfully deals with various noise sources, such as clouds and missing data, constituting a robust solution to multiple scenarios and settings. We also illustrate and quantify the quality of the generated product in the relevant downstream application of vegetation greenness forecasting, where using GANFilling enhances forecasting in approximately 70% of the considered regions in Europe. This research contributes to underlining the utility of deep learning for Earth observation data, which allows for improved spatially and temporally resolved monitoring of the Earth surface.
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信