Enhancing lesion detection in automated breast ultrasound using unsupervised multi-view contrastive learning with 3D DETR

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xing Tao , Yan Cao , Yanhui Jiang , Xiaoxi Wu , Dan Yan , Wen Xue , Shulian Zhuang , Xin Yang , Ruobing Huang , Jianxing Zhang , Dong Ni
{"title":"Enhancing lesion detection in automated breast ultrasound using unsupervised multi-view contrastive learning with 3D DETR","authors":"Xing Tao ,&nbsp;Yan Cao ,&nbsp;Yanhui Jiang ,&nbsp;Xiaoxi Wu ,&nbsp;Dan Yan ,&nbsp;Wen Xue ,&nbsp;Shulian Zhuang ,&nbsp;Xin Yang ,&nbsp;Ruobing Huang ,&nbsp;Jianxing Zhang ,&nbsp;Dong Ni","doi":"10.1016/j.media.2025.103466","DOIUrl":null,"url":null,"abstract":"<div><div>The inherent variability of lesions poses challenges in leveraging AI in 3D automated breast ultrasound (ABUS) for lesion detection. Traditional methods based on single scans have fallen short compared to comprehensive evaluations by experienced sonologists using multiple scans. To address this, our study introduces an innovative approach combining the multi-view co-attention mechanism (MCAM) with unsupervised contrastive learning. Rooted in the detection transformer (DETR) architecture, our model employs a one-to-many matching strategy, significantly boosting training efficiency and lesion recall metrics. The model integrates MCAM within the decoder, facilitating the interpretation of lesion data across diverse views. Simultaneously, unsupervised multi-view contrastive learning (UMCL) aligns features consistently across scans, improving detection performance. When tested on two multi-center datasets comprising 1509 patients, our approach outperforms existing state-of-the-art 3D detection models. Notably, our model achieves a 90.3% cancer detection rate with a false positive per image (FPPI) rate of 0.5 on the external validation dataset. This surpasses junior sonologists and matches the performance of seasoned experts.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103466"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000143","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The inherent variability of lesions poses challenges in leveraging AI in 3D automated breast ultrasound (ABUS) for lesion detection. Traditional methods based on single scans have fallen short compared to comprehensive evaluations by experienced sonologists using multiple scans. To address this, our study introduces an innovative approach combining the multi-view co-attention mechanism (MCAM) with unsupervised contrastive learning. Rooted in the detection transformer (DETR) architecture, our model employs a one-to-many matching strategy, significantly boosting training efficiency and lesion recall metrics. The model integrates MCAM within the decoder, facilitating the interpretation of lesion data across diverse views. Simultaneously, unsupervised multi-view contrastive learning (UMCL) aligns features consistently across scans, improving detection performance. When tested on two multi-center datasets comprising 1509 patients, our approach outperforms existing state-of-the-art 3D detection models. Notably, our model achieves a 90.3% cancer detection rate with a false positive per image (FPPI) rate of 0.5 on the external validation dataset. This surpasses junior sonologists and matches the performance of seasoned experts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信