Cheng-Jiang Wei, Yan Tang, Yang-Bai Sun, Tie-Long Yang, Cheng Yan, Hui Liu, Jun Liu, Jing-Ning Huang, Ming-Han Wang, Zhen-Wei Yao, Ji-Long Yang, Zhi-Chao Wang, Qing-Feng Li
{"title":"A multicenter study of neurofibromatosis type 1 utilizing deep learning for whole body tumor identification","authors":"Cheng-Jiang Wei, Yan Tang, Yang-Bai Sun, Tie-Long Yang, Cheng Yan, Hui Liu, Jun Liu, Jing-Ning Huang, Ming-Han Wang, Zhen-Wei Yao, Ji-Long Yang, Zhi-Chao Wang, Qing-Feng Li","doi":"10.1038/s41746-025-01454-z","DOIUrl":null,"url":null,"abstract":"<p>Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background. In a Chinese seven-center cohort, data from 347 subjects were analyzed. Our one-step model incorporated normal tissue/organ labels to provide contextual information, offering a solution for tumors with complex backgrounds. To address privacy concerns, we utilized a lightweight deep neural network suitable for hospital deployment. The final model achieved an accuracy of 85.71% for MPNST diagnosis in the validation cohort and 84.75% accuracy in the independent test set, outperforming another classic two-step model. This success suggests potential for AI models in screening other whole-body primary/metastatic tumors.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"14 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01454-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background. In a Chinese seven-center cohort, data from 347 subjects were analyzed. Our one-step model incorporated normal tissue/organ labels to provide contextual information, offering a solution for tumors with complex backgrounds. To address privacy concerns, we utilized a lightweight deep neural network suitable for hospital deployment. The final model achieved an accuracy of 85.71% for MPNST diagnosis in the validation cohort and 84.75% accuracy in the independent test set, outperforming another classic two-step model. This success suggests potential for AI models in screening other whole-body primary/metastatic tumors.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.