Functional profiling of the sequence stockpile: a protein pair-based assessment of in silico prediction tools.

R Prabakaran, Yana Bromberg
{"title":"Functional profiling of the sequence stockpile: a protein pair-based assessment of in silico prediction tools.","authors":"R Prabakaran, Yana Bromberg","doi":"10.1093/bioinformatics/btaf035","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>In silico functional annotation of proteins is crucial to narrowing the sequencing-accelerated gap in our understanding of protein activities. Numerous function annotation methods exist, and their ranks have been growing, particularly so with the recent deep learning-based developments. However, it is unclear if these tools are truly predictive. As we are not aware of any methods that can identify new terms in functional ontologies, we ask if they can, at least, identify molecular functions of proteins that are non-homologous to or far-removed from known protein families.</p><p><strong>Results: </strong>Here, we explore the potential and limitations of the existing methods in predicting the molecular functions of thousands of such proteins. Lacking the \"ground truth\" functional annotations, we transformed the assessment of function prediction into evaluation of functional similarity of protein pairs that likely share function but are unlike any of the currently functionally annotated sequences. Notably, our approach transcends the limitations of functional annotation vocabularies, providing a means to assess different-ontology annotation methods. We find that most existing methods are limited to identifying functional similarity of homologous sequences and fail to predict the function of proteins lacking reference. Curiously, despite their seemingly unlimited by-homology scope, deep learning methods also have trouble capturing the functional signal encoded in protein sequence. We believe that our work will inspire the development of a new generation of methods that push boundaries and promote exploration and discovery in the molecular function domain.</p><p><strong>Availability and implementation: </strong>The data underlying this article are available at https://doi.org/10.6084/m9.figshare.c.6737127.v3. The code used to compute siblings is available openly at https://bitbucket.org/bromberglab/siblings-detector/.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: In silico functional annotation of proteins is crucial to narrowing the sequencing-accelerated gap in our understanding of protein activities. Numerous function annotation methods exist, and their ranks have been growing, particularly so with the recent deep learning-based developments. However, it is unclear if these tools are truly predictive. As we are not aware of any methods that can identify new terms in functional ontologies, we ask if they can, at least, identify molecular functions of proteins that are non-homologous to or far-removed from known protein families.

Results: Here, we explore the potential and limitations of the existing methods in predicting the molecular functions of thousands of such proteins. Lacking the "ground truth" functional annotations, we transformed the assessment of function prediction into evaluation of functional similarity of protein pairs that likely share function but are unlike any of the currently functionally annotated sequences. Notably, our approach transcends the limitations of functional annotation vocabularies, providing a means to assess different-ontology annotation methods. We find that most existing methods are limited to identifying functional similarity of homologous sequences and fail to predict the function of proteins lacking reference. Curiously, despite their seemingly unlimited by-homology scope, deep learning methods also have trouble capturing the functional signal encoded in protein sequence. We believe that our work will inspire the development of a new generation of methods that push boundaries and promote exploration and discovery in the molecular function domain.

Availability and implementation: The data underlying this article are available at https://doi.org/10.6084/m9.figshare.c.6737127.v3. The code used to compute siblings is available openly at https://bitbucket.org/bromberglab/siblings-detector/.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信