Unraveling the Invisible: Topological Data Analysis as the New Frontier in Radiology's Diagnostic Arsenal.

IF 2.2 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yashbir Singh, Emilio Quaia
{"title":"Unraveling the Invisible: Topological Data Analysis as the New Frontier in Radiology's Diagnostic Arsenal.","authors":"Yashbir Singh, Emilio Quaia","doi":"10.3390/tomography11010006","DOIUrl":null,"url":null,"abstract":"<p><p>This commentary examines Topological Data Analysis (TDA) in radiology imaging, highlighting its revolutionary potential in medical image interpretation. TDA, which is grounded in mathematical topology, provides novel insights into complex, high-dimensional radiological data through persistent homology and topological features. We explore TDA's applications across medical imaging domains, including tumor characterization, cardiovascular imaging, and COVID-19 detection, where it demonstrates 15-20% improvements over traditional methods. The synergy between TDA and artificial intelligence presents promising opportunities for enhanced diagnostic accuracy. While implementation challenges exist, TDA's ability to uncover hidden patterns positions it as a transformative tool in modern radiology.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11010006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This commentary examines Topological Data Analysis (TDA) in radiology imaging, highlighting its revolutionary potential in medical image interpretation. TDA, which is grounded in mathematical topology, provides novel insights into complex, high-dimensional radiological data through persistent homology and topological features. We explore TDA's applications across medical imaging domains, including tumor characterization, cardiovascular imaging, and COVID-19 detection, where it demonstrates 15-20% improvements over traditional methods. The synergy between TDA and artificial intelligence presents promising opportunities for enhanced diagnostic accuracy. While implementation challenges exist, TDA's ability to uncover hidden patterns positions it as a transformative tool in modern radiology.

揭开隐形:拓扑学数据分析作为放射学诊断库的新前沿。
这篇评论探讨了拓扑数据分析(TDA)在放射成像,突出其在医学图像解释的革命性潜力。TDA以数学拓扑为基础,通过持续的同源性和拓扑特征,为复杂的高维放射学数据提供了新的见解。我们探索了TDA在医学成像领域的应用,包括肿瘤表征、心血管成像和COVID-19检测,在这些领域,它比传统方法提高了15-20%。TDA和人工智能之间的协同作用为提高诊断准确性提供了有希望的机会。虽然实施方面存在挑战,但TDA发现隐藏模式的能力使其成为现代放射学中的变革性工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tomography
Tomography Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍: TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine. Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians. Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信