Sara Salucci, Mirko Traversari, Laura Valentini, Ilaria Versari, Luca Ventura, Emanuela Giampalma, Elena Righi, Enrico Petrella, Pietro Gobbi, Gianandrea Pasquinelli, Irene Faenza
{"title":"The Role of 3D Virtual Anatomy and Scanning Environmental Electron Microscopy in Understanding Morphology and Pathology of Ancient Bodies.","authors":"Sara Salucci, Mirko Traversari, Laura Valentini, Ilaria Versari, Luca Ventura, Emanuela Giampalma, Elena Righi, Enrico Petrella, Pietro Gobbi, Gianandrea Pasquinelli, Irene Faenza","doi":"10.3390/tomography11010005","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Mummy studies allow to reconstruct the characteristic of a population in a specific spatiotemporal context, in terms of living conditions, pathologies and death. Radiology represents an efficient diagnostic technique able to establish the preservation state of mummified organs and to estimate the patient's pathological conditions. However, the radiological approach shows some limitations. Although bone structures are easy to differentiate, soft tissue components are much more challenging, especially when they overlap. For this reason, computed tomography, a well-established approach that achieves optimal image contrast and three-dimensional reconstruction, has been introduced. This original article focuses attention on the role of virtual dissection as a promising technology for exploring human mummy anatomy and considers the potential of environmental scanning electron microscopy and X-ray spectroscopy as complementary approaches useful to understand the state of preservation of mummified remains.</p><p><strong>Methods: </strong>Ancient mummy corps have been analyzed through Anatomage Table 10 and environmental scanning electron microscope equipped with X-ray spectrometer; Results: Anatomage Table 10 through various volumetric renderings allows us to describe spine alteration due to osteoarthritis, dental state, and other clinical-pathological characteristics of different mummies. Environmental scanning electron microscope, with the advantage of observing mummified samples without prior specimen preparation, details on the state of tissue fragments. Skin, tendon and muscle show a preserved morphology and keratinocytes, collagen fibers and tendon structures are easily recognizable. Furthermore, X-ray spectrometer reveals in our tissue remains, the presence of compounds related to soil contamination. This investigation identifies a plethora of organic and inorganic substances where the mummies were found, providing crucial information about the mummification environment.</p><p><strong>Conclusions: </strong>These morphological and analytical techniques make it possible to study mummified bodies and describe their anatomical details in real size, in a non-invasive and innovative way, demonstrating that these interdisciplinary approaches could have great potential for improving knowledge in the study of ancient corpses.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768611/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11010005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Mummy studies allow to reconstruct the characteristic of a population in a specific spatiotemporal context, in terms of living conditions, pathologies and death. Radiology represents an efficient diagnostic technique able to establish the preservation state of mummified organs and to estimate the patient's pathological conditions. However, the radiological approach shows some limitations. Although bone structures are easy to differentiate, soft tissue components are much more challenging, especially when they overlap. For this reason, computed tomography, a well-established approach that achieves optimal image contrast and three-dimensional reconstruction, has been introduced. This original article focuses attention on the role of virtual dissection as a promising technology for exploring human mummy anatomy and considers the potential of environmental scanning electron microscopy and X-ray spectroscopy as complementary approaches useful to understand the state of preservation of mummified remains.
Methods: Ancient mummy corps have been analyzed through Anatomage Table 10 and environmental scanning electron microscope equipped with X-ray spectrometer; Results: Anatomage Table 10 through various volumetric renderings allows us to describe spine alteration due to osteoarthritis, dental state, and other clinical-pathological characteristics of different mummies. Environmental scanning electron microscope, with the advantage of observing mummified samples without prior specimen preparation, details on the state of tissue fragments. Skin, tendon and muscle show a preserved morphology and keratinocytes, collagen fibers and tendon structures are easily recognizable. Furthermore, X-ray spectrometer reveals in our tissue remains, the presence of compounds related to soil contamination. This investigation identifies a plethora of organic and inorganic substances where the mummies were found, providing crucial information about the mummification environment.
Conclusions: These morphological and analytical techniques make it possible to study mummified bodies and describe their anatomical details in real size, in a non-invasive and innovative way, demonstrating that these interdisciplinary approaches could have great potential for improving knowledge in the study of ancient corpses.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.