Salivary Glands: Function, Dysfunction, Regeneration, and Repair.

Marco Tatullo, Gianfranco Favia, Nicola Antonio Adolfo Quaranta, Andrea Pacifici, Mohammad Islam, Pia Lopez-Jornet
{"title":"Salivary Glands: Function, Dysfunction, Regeneration, and Repair.","authors":"Marco Tatullo, Gianfranco Favia, Nicola Antonio Adolfo Quaranta, Andrea Pacifici, Mohammad Islam, Pia Lopez-Jornet","doi":"10.24976/Discov.Med.202537192.2","DOIUrl":null,"url":null,"abstract":"<p><p>Salivary gland dysfunctions are common conditions variously related to aging, inflammatory players, and any other factor able to alter their normal physiology. These conditions may significantly impact oral and systemic health, affecting the overall quality of life. Over time, numerous therapeutic strategies have been explored to regenerate, repair, or replace injured salivary glands, focusing on those molecular and cellular mechanisms able to be safely translated into a clinical landscape. In this context, stem cells, tissue engineering, and the novel organoids technology, have gained exciting results, even if such approaches may require some optimization for their long-term maintenance. Despite extensive research, a composite stem cell population capable of regenerating functional glandular tissue remains elusive; nonetheless, to overcome these current limitations, recently, the transplantation of allogeneic stem cells has emerged as a reliable solution. This overview comprehensively examines the salivary glands in the light of modern biotechnologies, with the aim of better understanding the current state of the art in salivary gland regeneration and repair by using tissue engineering, biomimetic strategies, target therapies, and three-dimensional (3D) organoids technology. This work investigates the main salivary gland dysfunctions and their impact on oral and systemic health. It then discusses the most promising advanced strategies for oral tissue bioengineering, focusing on the potential of stem cells and organoids.</p>","PeriodicalId":93980,"journal":{"name":"Discovery medicine","volume":"37 192","pages":"19-30"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24976/Discov.Med.202537192.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Salivary gland dysfunctions are common conditions variously related to aging, inflammatory players, and any other factor able to alter their normal physiology. These conditions may significantly impact oral and systemic health, affecting the overall quality of life. Over time, numerous therapeutic strategies have been explored to regenerate, repair, or replace injured salivary glands, focusing on those molecular and cellular mechanisms able to be safely translated into a clinical landscape. In this context, stem cells, tissue engineering, and the novel organoids technology, have gained exciting results, even if such approaches may require some optimization for their long-term maintenance. Despite extensive research, a composite stem cell population capable of regenerating functional glandular tissue remains elusive; nonetheless, to overcome these current limitations, recently, the transplantation of allogeneic stem cells has emerged as a reliable solution. This overview comprehensively examines the salivary glands in the light of modern biotechnologies, with the aim of better understanding the current state of the art in salivary gland regeneration and repair by using tissue engineering, biomimetic strategies, target therapies, and three-dimensional (3D) organoids technology. This work investigates the main salivary gland dysfunctions and their impact on oral and systemic health. It then discusses the most promising advanced strategies for oral tissue bioengineering, focusing on the potential of stem cells and organoids.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信