Chan Hong Moon, Frank S Lieberman, Hoby P Hetherington, Jullie W Pan
{"title":"Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain.","authors":"Chan Hong Moon, Frank S Lieberman, Hoby P Hetherington, Jullie W Pan","doi":"10.3390/tomography11010007","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: The increased SNR available at 7T combined with fast readout trajectories enables accelerated spectroscopic imaging acquisitions for clinical applications. In this report, we evaluate the performance of a Hadamard slice encoding strategy with a 2D rosette trajectory for multi-slice fast spectroscopic imaging at 7T. <b>Methods</b>: Moderate-TE (~40 ms) spin echo and J-refocused polarization transfer sequences were acquired with simultaneous Hadamard multi-slice excitations and rosette in-plane encoding. The moderate spin echo sequence, which targets singlet compounds (i.e., N-acetyl aspartate, creatine, and choline), uses cascaded multi-slice RF excitation pulses to minimize the chemical shift dispersion error. The J-refocused sequence targets coupled spin systems (i.e., glutamate and myo-inositol) using simultaneous multi-slice excitation to maintain the same TE across all slices. A modified Hadamard slice encoding strategy was used to decrease the peak RF pulse amplitude of the simultaneous multi-slice excitation pulse for the J-refocused acquisition. <b>Results</b>: The accuracy of multi-slice and single-slice rosette spectroscopic imaging (RSI) is comparable to conventional Cartesian-encoded spectroscopic imaging (CSI). Spectral analyses for the J-refocused studies of glutamate and myo-inositol show that the Cramer Rao lower bounds are not significantly different between the fast RSI and conventional CSI studies. Linear regressions of creatine/N-acetyl aspartate and glutamate/N-acetyl aspartate with tissue gray matter content are consistent with literature values. <b>Conclusions</b>: With minimal gradient demands and fast acquisition times, the 2.2 min to 9 min for single- to four-slice RSI acquisitions are well tolerated by healthy subjects and tumor patients, and show results that are consistent with clinical outcomes.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11010007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: The increased SNR available at 7T combined with fast readout trajectories enables accelerated spectroscopic imaging acquisitions for clinical applications. In this report, we evaluate the performance of a Hadamard slice encoding strategy with a 2D rosette trajectory for multi-slice fast spectroscopic imaging at 7T. Methods: Moderate-TE (~40 ms) spin echo and J-refocused polarization transfer sequences were acquired with simultaneous Hadamard multi-slice excitations and rosette in-plane encoding. The moderate spin echo sequence, which targets singlet compounds (i.e., N-acetyl aspartate, creatine, and choline), uses cascaded multi-slice RF excitation pulses to minimize the chemical shift dispersion error. The J-refocused sequence targets coupled spin systems (i.e., glutamate and myo-inositol) using simultaneous multi-slice excitation to maintain the same TE across all slices. A modified Hadamard slice encoding strategy was used to decrease the peak RF pulse amplitude of the simultaneous multi-slice excitation pulse for the J-refocused acquisition. Results: The accuracy of multi-slice and single-slice rosette spectroscopic imaging (RSI) is comparable to conventional Cartesian-encoded spectroscopic imaging (CSI). Spectral analyses for the J-refocused studies of glutamate and myo-inositol show that the Cramer Rao lower bounds are not significantly different between the fast RSI and conventional CSI studies. Linear regressions of creatine/N-acetyl aspartate and glutamate/N-acetyl aspartate with tissue gray matter content are consistent with literature values. Conclusions: With minimal gradient demands and fast acquisition times, the 2.2 min to 9 min for single- to four-slice RSI acquisitions are well tolerated by healthy subjects and tumor patients, and show results that are consistent with clinical outcomes.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.