Glioblastoma Stem Cells: MAP17 as a Novel Predictive Biomarker and Therapeutic Target Associated with Quiescence and Immune Evasion.

Sara Sadat Aghamiri, Rada Amin
{"title":"Glioblastoma Stem Cells: MAP17 as a Novel Predictive Biomarker and Therapeutic Target Associated with Quiescence and Immune Evasion.","authors":"Sara Sadat Aghamiri, Rada Amin","doi":"10.24976/Discov.Med.202537192.14","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma multiforme (GBM) is one of the deadliest and most heterogeneous forms of brain cancer, characterized by its resistance to conventional therapies. Within GBM, a subpopulation of slow-cycling cells, often linked to quiescence and stemness, plays a crucial role in treatment resistance and tumor recurrence. This study aimed to identify novel biomarkers associated with these slow-cycling GBM cells.</p><p><strong>Methods: </strong>We utilized The Cancer Genome Atlas (TCGA)-GBM dataset and presented the reproducible bioinformatics analysis for our results.</p><p><strong>Results: </strong>Our analysis highlighted Membrane-Associated Protein 17 (<i>MAP17</i>) as strongly associated with the slow-cycling phenotype. We found that the protein cargo <i>MAP17</i> expression is related to mesenchymal signatures and stem cell-related pathways. Also, <i>MAP17</i> was linked to a distinct metabolic profile, characterized by significant enrichment in pathways related to folate, zinc, and fatty acids. Moreover, the immune cell distribution analysis revealed that <i>MAP17</i> correlates with key molecular immune processes, including interferon-gamma (<i>IFN-γ</i>) signaling and antigen presentation, as well as immunosuppressive cells like myeloid-derived suppressor cells (MDSCs) and macrophages. <i>MAP17</i>-high tumors also showed elevated expression of several immune checkpoint inhibitors, indicating an immunosuppressive microenvironment.</p><p><strong>Conclusion: </strong>These findings provide insight into the role of <i>MAP17</i> in quiescence, stemness, and immune evasion, positioning it as a promising therapeutic target.</p>","PeriodicalId":93980,"journal":{"name":"Discovery medicine","volume":"37 192","pages":"166-181"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24976/Discov.Med.202537192.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioblastoma multiforme (GBM) is one of the deadliest and most heterogeneous forms of brain cancer, characterized by its resistance to conventional therapies. Within GBM, a subpopulation of slow-cycling cells, often linked to quiescence and stemness, plays a crucial role in treatment resistance and tumor recurrence. This study aimed to identify novel biomarkers associated with these slow-cycling GBM cells.

Methods: We utilized The Cancer Genome Atlas (TCGA)-GBM dataset and presented the reproducible bioinformatics analysis for our results.

Results: Our analysis highlighted Membrane-Associated Protein 17 (MAP17) as strongly associated with the slow-cycling phenotype. We found that the protein cargo MAP17 expression is related to mesenchymal signatures and stem cell-related pathways. Also, MAP17 was linked to a distinct metabolic profile, characterized by significant enrichment in pathways related to folate, zinc, and fatty acids. Moreover, the immune cell distribution analysis revealed that MAP17 correlates with key molecular immune processes, including interferon-gamma (IFN-γ) signaling and antigen presentation, as well as immunosuppressive cells like myeloid-derived suppressor cells (MDSCs) and macrophages. MAP17-high tumors also showed elevated expression of several immune checkpoint inhibitors, indicating an immunosuppressive microenvironment.

Conclusion: These findings provide insight into the role of MAP17 in quiescence, stemness, and immune evasion, positioning it as a promising therapeutic target.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信