Matteo Ferrante, Paolo De Marco, Osvaldo Rampado, Laura Gianusso, Daniela Origgi
{"title":"Effective Dose Estimation in Computed Tomography by Machine Learning.","authors":"Matteo Ferrante, Paolo De Marco, Osvaldo Rampado, Laura Gianusso, Daniela Origgi","doi":"10.3390/tomography11010002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Computed tomography scans are widely used in everyday medical practice due to speed, image reliability, and detectability of a wide range of pathologies. Each scan exposes the patient to a radiation dose, and performing a fast estimation of the effective dose (E) is an important step for radiological safety. The aim of this work is to estimate E from patient and CT acquisition parameters in the absence of a dose-tracking software exploiting machine learning.</p><p><strong>Methods: </strong>In total, 69,037 CT acquisitions were collected with the dose-tracking software (DTS) available at our institution. E calculated by DTS was chosen as the target value for prediction. Different machine learning algorithms were selected, optimizing parameters to achieve the best performance for each algorithm. Effective dose was also estimated using DLP and k-factors, and with multiple linear regression. Mean absolute error (MAE, mean absolute percentage error (MAPE), and R<sup>2</sup> were used to evaluate predictions in the test set and in an external dataset of 3800 acquisitions.</p><p><strong>Results: </strong>The random forest regressor (MAE: 0.416 mSv; MAPE: 7%; and R<sup>2</sup>: 0.98) showed best performances over the neural network and the support vector machine. However, all three machine learning algorithms outperformed effective dose estimation using k-factors (MAE: 2.06; MAPE: 26%) or multiple linear regression (MAE: 0.98; MAPE: 44.4%). The random forest regressor on the external dataset showed an MAE of 0.215 mSv and an MAPE of 7.1%.</p><p><strong>Conclusions: </strong>Our work demonstrated that machine learning models trained with data calculated by a dose-tracking software can provide good estimates of the effective dose just from patient and scanner parameters, without the need for a Monte Carlo approach.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768726/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11010002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Computed tomography scans are widely used in everyday medical practice due to speed, image reliability, and detectability of a wide range of pathologies. Each scan exposes the patient to a radiation dose, and performing a fast estimation of the effective dose (E) is an important step for radiological safety. The aim of this work is to estimate E from patient and CT acquisition parameters in the absence of a dose-tracking software exploiting machine learning.
Methods: In total, 69,037 CT acquisitions were collected with the dose-tracking software (DTS) available at our institution. E calculated by DTS was chosen as the target value for prediction. Different machine learning algorithms were selected, optimizing parameters to achieve the best performance for each algorithm. Effective dose was also estimated using DLP and k-factors, and with multiple linear regression. Mean absolute error (MAE, mean absolute percentage error (MAPE), and R2 were used to evaluate predictions in the test set and in an external dataset of 3800 acquisitions.
Results: The random forest regressor (MAE: 0.416 mSv; MAPE: 7%; and R2: 0.98) showed best performances over the neural network and the support vector machine. However, all three machine learning algorithms outperformed effective dose estimation using k-factors (MAE: 2.06; MAPE: 26%) or multiple linear regression (MAE: 0.98; MAPE: 44.4%). The random forest regressor on the external dataset showed an MAE of 0.215 mSv and an MAPE of 7.1%.
Conclusions: Our work demonstrated that machine learning models trained with data calculated by a dose-tracking software can provide good estimates of the effective dose just from patient and scanner parameters, without the need for a Monte Carlo approach.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.