Enhanced CATBraTS for Brain Tumour Semantic Segmentation.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Rim El Badaoui, Ester Bonmati Coll, Alexandra Psarrou, Hykoush A Asaturyan, Barbara Villarini
{"title":"Enhanced CATBraTS for Brain Tumour Semantic Segmentation.","authors":"Rim El Badaoui, Ester Bonmati Coll, Alexandra Psarrou, Hykoush A Asaturyan, Barbara Villarini","doi":"10.3390/jimaging11010008","DOIUrl":null,"url":null,"abstract":"<p><p>The early and precise identification of a brain tumour is imperative for enhancing a patient's life expectancy; this can be facilitated by quick and efficient tumour segmentation in medical imaging. Automatic brain tumour segmentation tools in computer vision have integrated powerful deep learning architectures to enable accurate tumour boundary delineation. Our study aims to demonstrate improved segmentation accuracy and higher statistical stability, using datasets obtained from diverse imaging acquisition parameters. This paper introduces a novel, fully automated model called Enhanced Channel Attention Transformer (E-CATBraTS) for Brain Tumour Semantic Segmentation; this model builds upon 3D CATBraTS, a vision transformer employed in magnetic resonance imaging (MRI) brain tumour segmentation tasks. E-CATBraTS integrates convolutional neural networks and Swin Transformer, incorporating channel shuffling and attention mechanisms to effectively segment brain tumours in multi-modal MRI. The model was evaluated on four datasets containing 3137 brain MRI scans. Through the adoption of E-CATBraTS, the accuracy of the results improved significantly on two datasets, outperforming the current state-of-the-art models by a mean DSC of 2.6% while maintaining a high accuracy that is comparable to the top-performing models on the other datasets. The results demonstrate that E-CATBraTS achieves both high segmentation accuracy and elevated generalisation abilities, ensuring the model is robust to dataset variation.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766851/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The early and precise identification of a brain tumour is imperative for enhancing a patient's life expectancy; this can be facilitated by quick and efficient tumour segmentation in medical imaging. Automatic brain tumour segmentation tools in computer vision have integrated powerful deep learning architectures to enable accurate tumour boundary delineation. Our study aims to demonstrate improved segmentation accuracy and higher statistical stability, using datasets obtained from diverse imaging acquisition parameters. This paper introduces a novel, fully automated model called Enhanced Channel Attention Transformer (E-CATBraTS) for Brain Tumour Semantic Segmentation; this model builds upon 3D CATBraTS, a vision transformer employed in magnetic resonance imaging (MRI) brain tumour segmentation tasks. E-CATBraTS integrates convolutional neural networks and Swin Transformer, incorporating channel shuffling and attention mechanisms to effectively segment brain tumours in multi-modal MRI. The model was evaluated on four datasets containing 3137 brain MRI scans. Through the adoption of E-CATBraTS, the accuracy of the results improved significantly on two datasets, outperforming the current state-of-the-art models by a mean DSC of 2.6% while maintaining a high accuracy that is comparable to the top-performing models on the other datasets. The results demonstrate that E-CATBraTS achieves both high segmentation accuracy and elevated generalisation abilities, ensuring the model is robust to dataset variation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信