{"title":"Non-Parametric Estimation for Semi-Competing Risks Data With Event Misascertainment.","authors":"Ruiqian Wu, Ying Zhang, Giorgos Bakoyannis","doi":"10.1002/sim.10332","DOIUrl":null,"url":null,"abstract":"<p><p>The semi-competing risks data model is a special type of disease-state model that focuses on studying the association between an intermediate event and a terminal event and proves to be a useful tool in modeling disease progression. The study of the semi-competing risk data model not only allows us to evaluate whether a disease episode is related to death but also provides a toolkit to predict death, given that the episode occurred at a certain time. However, the computation of the semi-competing risk models is a numerically challenging task. The Gamma-Frailty conditional Markov model has been shown to be an efficient computation model for studying semi-competing risks data. Building on recent advances in studying semi-competing risks data, this work proposes a non-parametric pseudo-likelihood method equipped with an EM-like algorithm to study semi-competing risks data with event misascertainment under the restricted Gamma-Frailty conditional Markov model. A thorough simulation study is conducted to demonstrate the inference validity of the proposed method and its numerical stability. The proposed method is applied to a large HIV cohort study, EA-IeDEA, that has a severe death under-reporting issue to assess the degree of adverse impact of the interruption of ART care on HIV mortality.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 3-4","pages":"e10332"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758483/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10332","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The semi-competing risks data model is a special type of disease-state model that focuses on studying the association between an intermediate event and a terminal event and proves to be a useful tool in modeling disease progression. The study of the semi-competing risk data model not only allows us to evaluate whether a disease episode is related to death but also provides a toolkit to predict death, given that the episode occurred at a certain time. However, the computation of the semi-competing risk models is a numerically challenging task. The Gamma-Frailty conditional Markov model has been shown to be an efficient computation model for studying semi-competing risks data. Building on recent advances in studying semi-competing risks data, this work proposes a non-parametric pseudo-likelihood method equipped with an EM-like algorithm to study semi-competing risks data with event misascertainment under the restricted Gamma-Frailty conditional Markov model. A thorough simulation study is conducted to demonstrate the inference validity of the proposed method and its numerical stability. The proposed method is applied to a large HIV cohort study, EA-IeDEA, that has a severe death under-reporting issue to assess the degree of adverse impact of the interruption of ART care on HIV mortality.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.