Allocation Predictability of Individual Assignments in Restricted Randomization Designs for Two-Arm Equal Allocation Trials.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Wenle Zhao, Sherry Livingston
{"title":"Allocation Predictability of Individual Assignments in Restricted Randomization Designs for Two-Arm Equal Allocation Trials.","authors":"Wenle Zhao, Sherry Livingston","doi":"10.1002/sim.10343","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript derives the allocation predictability measured by the correct guess probability and the probability of being deterministic for individual treatment assignments, as well as the averages of a randomization sequence, based on the treatment imbalance transition matrix and the conditional allocation probability. The methods described are applicable to restricted randomization designs that satisfy the following criteria: (1) two-arm equal allocation, (2) restriction of maximum tolerated imbalance, and (3) conditional allocation probability fully determined by the observed current treatment imbalance. Analytical results indicate that, for two-arm equal allocation trials, allocation predictability alternates by the odd/even sequence order of the treatment assignment. Additionally, the sequence average allocation predictability converges to its asymptotic value significantly more slowly than the allocation predictability for individual assignment does. Consequently, comparisons of allocation predictability between different randomization designs based on sequence averages are sensitive to sequence length. Using sequence average allocation predictability may underestimate the risk of selection bias for individual assignment. This discrepancy is particularly pronounced for short sequence lengths, where individual assignment predictability can be substantially higher than the sequence average.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 3-4","pages":"e10343"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10343","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript derives the allocation predictability measured by the correct guess probability and the probability of being deterministic for individual treatment assignments, as well as the averages of a randomization sequence, based on the treatment imbalance transition matrix and the conditional allocation probability. The methods described are applicable to restricted randomization designs that satisfy the following criteria: (1) two-arm equal allocation, (2) restriction of maximum tolerated imbalance, and (3) conditional allocation probability fully determined by the observed current treatment imbalance. Analytical results indicate that, for two-arm equal allocation trials, allocation predictability alternates by the odd/even sequence order of the treatment assignment. Additionally, the sequence average allocation predictability converges to its asymptotic value significantly more slowly than the allocation predictability for individual assignment does. Consequently, comparisons of allocation predictability between different randomization designs based on sequence averages are sensitive to sequence length. Using sequence average allocation predictability may underestimate the risk of selection bias for individual assignment. This discrepancy is particularly pronounced for short sequence lengths, where individual assignment predictability can be substantially higher than the sequence average.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信