Interplay between the cyclophilin homology domain of RANBP2 and MX2 regulates HIV-1 capsid dependencies on nucleoporins.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-03-12 Epub Date: 2025-01-24 DOI:10.1128/mbio.02646-24
Haley Flick, Ananya Venbakkam, Parmit K Singh, Bailey Layish, Szu-Wei Huang, Rajalingam Radhakrishnan, Mamuka Kvaratskhelia, Alan N Engelman, Melissa Kane
{"title":"Interplay between the cyclophilin homology domain of RANBP2 and MX2 regulates HIV-1 capsid dependencies on nucleoporins.","authors":"Haley Flick, Ananya Venbakkam, Parmit K Singh, Bailey Layish, Szu-Wei Huang, Rajalingam Radhakrishnan, Mamuka Kvaratskhelia, Alan N Engelman, Melissa Kane","doi":"10.1128/mbio.02646-24","DOIUrl":null,"url":null,"abstract":"<p><p>Interlinked interactions between the viral capsid (CA), nucleoporins (Nups), and the antiviral protein myxovirus resistance 2 (MX2/MXB) influence human immunodeficiency virus 1 (HIV-1) nuclear entry and the outcome of infection. Although RANBP2/NUP358 has been repeatedly identified as a critical player in HIV-1 nuclear import and MX2 activity, the mechanism by which RANBP2 facilitates HIV-1 infection is not well understood. To explore the interactions between MX2, the viral CA, and RANBP2, we utilized CRISPR-Cas9 to generate cell lines expressing RANBP2 from its endogenous locus but lacking the C-terminal cyclophilin (Cyp) homology domain and found that both HIV-1 and HIV-2 infections were reduced significantly in RANBP2<sub>ΔCyp</sub> cells. Importantly, although MX2 still localized to the nuclear pore complex in RANBP2<sub>ΔCyp</sub> cells, antiviral activity against HIV-1 was decreased. By generating cells expressing specific point mutations in the RANBP2-Cyp domain, we determined that the effect of the RANBP2-Cyp domain on MX2 anti-HIV-1 activity is due to direct interactions between RANBP2 and CA. We further determined that CypA and RANBP2-Cyp have similar effects on HIV-1 integration targeting. Finally, we found that the Nup requirements for HIV infection and MX2 activity were altered in cells lacking the RANBP2-Cyp domain. These findings demonstrate that the RANBP2-Cyp domain affects viral infection and MX2 sensitivity by altering CA-specific interactions with cellular factors that affect nuclear import and integration targeting.</p><p><strong>Importance: </strong>Human immunodeficiency virus 1 (HIV-1) entry into the nucleus is an essential step in viral replication that involves complex interactions between the viral capsid (CA) and multiple cellular proteins, including nucleoporins (Nups) such as RANBP2. Nups also mediate the function of the antiviral protein myxovirus resistance 2 (MX2); however, determining the precise role of Nups in HIV infection has proved challenging due to the complex nature of the nuclear pore complex (NPC) and significant pleiotropic effects elicited by Nup depletion. We have used precise gene editing to assess the role of the cyclophilin domain of RANBP2 in HIV-1 infection and MX2 activity. We find that this domain affects viral infection, nucleoporin requirements, MX2 sensitivity, and integration targeting in a CA-specific manner, providing detailed insights into how RANBP2 contributes to HIV-1 infection.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0264624"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898759/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.02646-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Interlinked interactions between the viral capsid (CA), nucleoporins (Nups), and the antiviral protein myxovirus resistance 2 (MX2/MXB) influence human immunodeficiency virus 1 (HIV-1) nuclear entry and the outcome of infection. Although RANBP2/NUP358 has been repeatedly identified as a critical player in HIV-1 nuclear import and MX2 activity, the mechanism by which RANBP2 facilitates HIV-1 infection is not well understood. To explore the interactions between MX2, the viral CA, and RANBP2, we utilized CRISPR-Cas9 to generate cell lines expressing RANBP2 from its endogenous locus but lacking the C-terminal cyclophilin (Cyp) homology domain and found that both HIV-1 and HIV-2 infections were reduced significantly in RANBP2ΔCyp cells. Importantly, although MX2 still localized to the nuclear pore complex in RANBP2ΔCyp cells, antiviral activity against HIV-1 was decreased. By generating cells expressing specific point mutations in the RANBP2-Cyp domain, we determined that the effect of the RANBP2-Cyp domain on MX2 anti-HIV-1 activity is due to direct interactions between RANBP2 and CA. We further determined that CypA and RANBP2-Cyp have similar effects on HIV-1 integration targeting. Finally, we found that the Nup requirements for HIV infection and MX2 activity were altered in cells lacking the RANBP2-Cyp domain. These findings demonstrate that the RANBP2-Cyp domain affects viral infection and MX2 sensitivity by altering CA-specific interactions with cellular factors that affect nuclear import and integration targeting.

Importance: Human immunodeficiency virus 1 (HIV-1) entry into the nucleus is an essential step in viral replication that involves complex interactions between the viral capsid (CA) and multiple cellular proteins, including nucleoporins (Nups) such as RANBP2. Nups also mediate the function of the antiviral protein myxovirus resistance 2 (MX2); however, determining the precise role of Nups in HIV infection has proved challenging due to the complex nature of the nuclear pore complex (NPC) and significant pleiotropic effects elicited by Nup depletion. We have used precise gene editing to assess the role of the cyclophilin domain of RANBP2 in HIV-1 infection and MX2 activity. We find that this domain affects viral infection, nucleoporin requirements, MX2 sensitivity, and integration targeting in a CA-specific manner, providing detailed insights into how RANBP2 contributes to HIV-1 infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信