Optimized genetic tools for neuroanatomical and functional mapping of the Aedes aegypti olfactory system.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Shruti Shankar, Diego Giraldo, Genevieve M Tauxe, Emma D Spikol, Ming Li, Omar S Akbari, Margot P Wohl, Conor J McMeniman
{"title":"Optimized genetic tools for neuroanatomical and functional mapping of the Aedes aegypti olfactory system.","authors":"Shruti Shankar, Diego Giraldo, Genevieve M Tauxe, Emma D Spikol, Ming Li, Omar S Akbari, Margot P Wohl, Conor J McMeniman","doi":"10.1093/g3journal/jkae307","DOIUrl":null,"url":null,"abstract":"<p><p>The mosquito Aedes aegypti is an emerging model insect for invertebrate neurobiology. We detail the application of a dual transgenesis marker system that reports the nature of transgene integration with circular donor template for CRISPR-Cas9-mediated homology-directed repair at target mosquito chemoreceptor genes. Employing this approach, we demonstrate the establishment of cell-type-specific T2A-QF2 driver lines for the A. aegypti olfactory co-receptor genes Ir8a and orco via canonical homology-directed repair and the CO2 receptor complex gene Gr1 via noncanonical homology-directed repair involving duplication of the intended T2A-QF2 integration cassette separated by intervening donor plasmid sequence. Using Gr1+ olfactory sensory neurons as an example, we show that introgression of such T2A-QF2 driver and QUAS responder transgenes into a yellow cuticular pigmentation mutant strain facilitates transcuticular calcium imaging of CO2-evoked neural activity on the maxillary palps with enhanced sensitivity relative to wild-type mosquitoes enveloped by dark melanized cuticle. We further apply Cre-loxP excision to derive marker-free T2A-QF2 in-frame fusions to clearly map axonal projection patterns from olfactory sensory neurons expressing these 3 chemoreceptors into the A. aegypti antennal lobe devoid of background interference from 3xP3-based fluorescent transgenesis markers. The marker-free Gr1 T2A-QF2 driver facilitates clear recording of CO2-evoked responses in this central brain region using the genetically encoded calcium indicators GCaMP6s and CaMPARI2. Systematic application of these optimized methods to different chemoreceptors stands to enable mapping A. aegypti olfactory circuits at peripheral and central levels of olfactory coding at high resolution.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae307","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The mosquito Aedes aegypti is an emerging model insect for invertebrate neurobiology. We detail the application of a dual transgenesis marker system that reports the nature of transgene integration with circular donor template for CRISPR-Cas9-mediated homology-directed repair at target mosquito chemoreceptor genes. Employing this approach, we demonstrate the establishment of cell-type-specific T2A-QF2 driver lines for the A. aegypti olfactory co-receptor genes Ir8a and orco via canonical homology-directed repair and the CO2 receptor complex gene Gr1 via noncanonical homology-directed repair involving duplication of the intended T2A-QF2 integration cassette separated by intervening donor plasmid sequence. Using Gr1+ olfactory sensory neurons as an example, we show that introgression of such T2A-QF2 driver and QUAS responder transgenes into a yellow cuticular pigmentation mutant strain facilitates transcuticular calcium imaging of CO2-evoked neural activity on the maxillary palps with enhanced sensitivity relative to wild-type mosquitoes enveloped by dark melanized cuticle. We further apply Cre-loxP excision to derive marker-free T2A-QF2 in-frame fusions to clearly map axonal projection patterns from olfactory sensory neurons expressing these 3 chemoreceptors into the A. aegypti antennal lobe devoid of background interference from 3xP3-based fluorescent transgenesis markers. The marker-free Gr1 T2A-QF2 driver facilitates clear recording of CO2-evoked responses in this central brain region using the genetically encoded calcium indicators GCaMP6s and CaMPARI2. Systematic application of these optimized methods to different chemoreceptors stands to enable mapping A. aegypti olfactory circuits at peripheral and central levels of olfactory coding at high resolution.

求助全文
约1分钟内获得全文 求助全文
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信