Targeting SLC4A4: A Novel Approach in Colorectal Cancer Drug Repurposing.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Krunal Pawar, Pramodkumar P Gupta, Pooran Singh Solanki, Ravi Ranjan Kumar Niraj, Shanker L Kothari
{"title":"Targeting SLC4A4: A Novel Approach in Colorectal Cancer Drug Repurposing.","authors":"Krunal Pawar, Pramodkumar P Gupta, Pooran Singh Solanki, Ravi Ranjan Kumar Niraj, Shanker L Kothari","doi":"10.3390/cimb47010067","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) is a complex and increasingly prevalent malignancy with significant challenges in its treatment and prognosis. This study aims to explore the role of the SLC4A4 transporter as a biomarker in CRC progression and its potential as a therapeutic target, particularly in relation to tumor acidity and immune response.</p><p><strong>Methods: </strong>The study utilized computational approaches, including receptor-based virtual screening and high-throughput docking, to identify potential SLC4A4 inhibitors. A model of the human SLC4A4 structure was generated based on CryoEM data (PDB ID 6CAA), and drug candidates from the DrugBank database were evaluated using two computational tools (DrugRep and CB-DOCK2).</p><p><strong>Results: </strong>The study identified the compound (5R)-N-[(1r)-3-(4-hydroxyphenyl)butanoyl]-2-decanamide (DB07991) as the best ligand, demonstrating favorable binding affinity and stability. Molecular dynamics simulations revealed strong protein-ligand interactions with consistent RMSD (~0.25 nm), RMSF (~0.5 nm), compact Rg (4.0-3.9 nm), and stable SASA profiles, indicating that the SLC4A4 structure remains stable upon ligand binding.</p><p><strong>Conclusions: </strong>The findings suggest that DB07991 is a promising drug candidate for further investigation as a therapeutic agent against CRC, particularly for targeting SLC4A4. This study highlights the potential of computational drug repositioning in identifying effective treatments for colorectal cancer.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47010067","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Colorectal cancer (CRC) is a complex and increasingly prevalent malignancy with significant challenges in its treatment and prognosis. This study aims to explore the role of the SLC4A4 transporter as a biomarker in CRC progression and its potential as a therapeutic target, particularly in relation to tumor acidity and immune response.

Methods: The study utilized computational approaches, including receptor-based virtual screening and high-throughput docking, to identify potential SLC4A4 inhibitors. A model of the human SLC4A4 structure was generated based on CryoEM data (PDB ID 6CAA), and drug candidates from the DrugBank database were evaluated using two computational tools (DrugRep and CB-DOCK2).

Results: The study identified the compound (5R)-N-[(1r)-3-(4-hydroxyphenyl)butanoyl]-2-decanamide (DB07991) as the best ligand, demonstrating favorable binding affinity and stability. Molecular dynamics simulations revealed strong protein-ligand interactions with consistent RMSD (~0.25 nm), RMSF (~0.5 nm), compact Rg (4.0-3.9 nm), and stable SASA profiles, indicating that the SLC4A4 structure remains stable upon ligand binding.

Conclusions: The findings suggest that DB07991 is a promising drug candidate for further investigation as a therapeutic agent against CRC, particularly for targeting SLC4A4. This study highlights the potential of computational drug repositioning in identifying effective treatments for colorectal cancer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Issues in Molecular Biology
Current Issues in Molecular Biology 生物-生化研究方法
CiteScore
2.90
自引率
3.20%
发文量
380
审稿时长
>12 weeks
期刊介绍: Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信