Valentin Bockmair, Martin Regnat, Huu Khanh Trinh Tran, Andreas J Kornath
{"title":"Structural investigations of benzoyl fluoride and the benzoacyl cation of low-melting compounds and reactive intermediates.","authors":"Valentin Bockmair, Martin Regnat, Huu Khanh Trinh Tran, Andreas J Kornath","doi":"10.1107/S2053229625000476","DOIUrl":null,"url":null,"abstract":"<p><p>Acyl fluorides and acyl cations represent typical reactive intermediates in organic reactions, such as Friedel-Crafts acylation. However, the comparatively stable phenyl-substituted compounds have not been fully characterized yet, offering a promising backbone. Attempts to isolate the benzoacylium cation have only been carried out starting from the acyl chloride with weaker chloride-based Lewis acids. Therefore, only adducts of 1,4-stabilized acyl cations could be obtained. Due to the low melting point of benzoyl fluoride, together with its volitality and sensitivity toward hydrolysis, the structures of the acyl fluoride and its acylium cation have not been determined. Herein, we report the first crystal structure of benzoyl fluoride, C<sub>7</sub>H<sub>5</sub>FO or PhCOF (monoclinic P2<sub>1</sub>/n, Z = 8) and the benzoacylium undecafluorodiarsenate, C<sub>7</sub>H<sub>5</sub>O<sup>+</sup>·As<sub>2</sub>F<sub>11</sub><sup>-</sup> or [PhCO]<sup>+</sup>[As<sub>2</sub>F<sub>11</sub>]<sup>-</sup> (monoclinic P2<sub>1</sub>/n, Z = 4). The compounds were characterized by low-temperature vibrational spectroscopy and single-crystal X-ray analysis, and are discussed together with quantum chemical calculations. In addition, their specific π-interactions were elucidated.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"93-101"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795653/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section C Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2053229625000476","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acyl fluorides and acyl cations represent typical reactive intermediates in organic reactions, such as Friedel-Crafts acylation. However, the comparatively stable phenyl-substituted compounds have not been fully characterized yet, offering a promising backbone. Attempts to isolate the benzoacylium cation have only been carried out starting from the acyl chloride with weaker chloride-based Lewis acids. Therefore, only adducts of 1,4-stabilized acyl cations could be obtained. Due to the low melting point of benzoyl fluoride, together with its volitality and sensitivity toward hydrolysis, the structures of the acyl fluoride and its acylium cation have not been determined. Herein, we report the first crystal structure of benzoyl fluoride, C7H5FO or PhCOF (monoclinic P21/n, Z = 8) and the benzoacylium undecafluorodiarsenate, C7H5O+·As2F11- or [PhCO]+[As2F11]- (monoclinic P21/n, Z = 4). The compounds were characterized by low-temperature vibrational spectroscopy and single-crystal X-ray analysis, and are discussed together with quantum chemical calculations. In addition, their specific π-interactions were elucidated.
期刊介绍:
Acta Crystallographica Section C: Structural Chemistry is continuing its transition to a journal that publishes exciting science with structural content, in particular, important results relating to the chemical sciences. Section C is the journal of choice for the rapid publication of articles that highlight interesting research facilitated by the determination, calculation or analysis of structures of any type, other than macromolecular structures. Articles that emphasize the science and the outcomes that were enabled by the study are particularly welcomed. Authors are encouraged to include mainstream science in their papers, thereby producing manuscripts that are substantial scientific well-rounded contributions that appeal to a broad community of readers and increase the profile of the authors.