Homeobox C4 transcription factor promotes adipose tissue thermogenesis

IF 6.2 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Diabetes Pub Date : 2025-01-24 DOI:10.2337/db24-0675
Ting Yang, Yuxuan Wang, Hang Li, Fengshou Shi, Siqi Xu, Yingting Wu, Jiaqi Xin, Yi Liu, Mengxi Jiang
{"title":"Homeobox C4 transcription factor promotes adipose tissue thermogenesis","authors":"Ting Yang, Yuxuan Wang, Hang Li, Fengshou Shi, Siqi Xu, Yingting Wu, Jiaqi Xin, Yi Liu, Mengxi Jiang","doi":"10.2337/db24-0675","DOIUrl":null,"url":null,"abstract":"The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation. In mouse brown adipose tissue, HOXC4 expression negatively correlated with body weight and positively correlated with Ucp1 expression. Through gain- and loss-of-function experiments in mice, we established that HOXC4 is both sufficient and necessary for adipose thermogenesis, leading to enhanced cold tolerance and protection against diet-induced obesity and insulin resistance. Human and mouse primary adipocyte models further confirmed that the thermogenic activation function of HOXC4 is cell-autonomous. Mechanistically, HOXC4 collaborates with cofactor NCOA1 via its hexapeptide motif to form a transcriptional complex at the Ucp1 promoter, thereby promoting Ucp1 transcription and adipose thermogenesis. These findings delineate a novel mechanism by which HOXC4 drives thermogenic transcription and adipose energy metabolism, offering potential therapeutic targets for obesity-related metabolic disorders.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"61 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0675","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation. In mouse brown adipose tissue, HOXC4 expression negatively correlated with body weight and positively correlated with Ucp1 expression. Through gain- and loss-of-function experiments in mice, we established that HOXC4 is both sufficient and necessary for adipose thermogenesis, leading to enhanced cold tolerance and protection against diet-induced obesity and insulin resistance. Human and mouse primary adipocyte models further confirmed that the thermogenic activation function of HOXC4 is cell-autonomous. Mechanistically, HOXC4 collaborates with cofactor NCOA1 via its hexapeptide motif to form a transcriptional complex at the Ucp1 promoter, thereby promoting Ucp1 transcription and adipose thermogenesis. These findings delineate a novel mechanism by which HOXC4 drives thermogenic transcription and adipose energy metabolism, offering potential therapeutic targets for obesity-related metabolic disorders.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diabetes
Diabetes 医学-内分泌学与代谢
CiteScore
12.50
自引率
2.60%
发文量
1968
审稿时长
1 months
期刊介绍: Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes. However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信