EPR Characterization of the BlsE Substrate Radical Offers Insight into the Determinants of Reaction Outcome that Distinguish Radical SAM Dioldehydratases from Dehydrogenases

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Baixu Ma, Yu-Hsuan Lee, Mark W. Ruszczycky, Daan Ren, Amelia Engstrom, Hung-wen Liu, Lizhi Tao
{"title":"EPR Characterization of the BlsE Substrate Radical Offers Insight into the Determinants of Reaction Outcome that Distinguish Radical SAM Dioldehydratases from Dehydrogenases","authors":"Baixu Ma, Yu-Hsuan Lee, Mark W. Ruszczycky, Daan Ren, Amelia Engstrom, Hung-wen Liu, Lizhi Tao","doi":"10.1021/jacs.4c13307","DOIUrl":null,"url":null,"abstract":"A small but growing set of radical SAM (<i>S</i>-adenosyl-<span>l</span>-methionine) enzymes catalyze the radical mediated dehydration or dehydrogenation of 1,2-diol substrates. In some cases, these activities can be interchanged via minor structural perturbations to the reacting components raising questions regarding the relative importance of hyperconjugation, proton circulation and leaving group stability in determining the reaction outcome. The present work describes trapping and electron paramagnetic resonance (EPR) characterization of an α-hydroxyalkyl radical intermediate during dehydration and dehydrogenation of cytosylglucuronic acid and its derivatives catalyzed by the radical SAM enzyme BlsE and its Glu189Ala mutant from the blasticidin S biosynthetic pathway. The substrate radical is found to have a dihedral angle between the electron spin carrier p-orbital and the C–O bond to be cleaved that appears to be sufficient to support elimination despite lying outside the strictly periplanar region. A more significant contributor to the gating of dehydration activity, however, appears to be establishment of a proper hydrogen bonding configuration in order to stabilize the accumulation of negative charge on the eliminated hydroxyl group.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"28 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13307","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A small but growing set of radical SAM (S-adenosyl-l-methionine) enzymes catalyze the radical mediated dehydration or dehydrogenation of 1,2-diol substrates. In some cases, these activities can be interchanged via minor structural perturbations to the reacting components raising questions regarding the relative importance of hyperconjugation, proton circulation and leaving group stability in determining the reaction outcome. The present work describes trapping and electron paramagnetic resonance (EPR) characterization of an α-hydroxyalkyl radical intermediate during dehydration and dehydrogenation of cytosylglucuronic acid and its derivatives catalyzed by the radical SAM enzyme BlsE and its Glu189Ala mutant from the blasticidin S biosynthetic pathway. The substrate radical is found to have a dihedral angle between the electron spin carrier p-orbital and the C–O bond to be cleaved that appears to be sufficient to support elimination despite lying outside the strictly periplanar region. A more significant contributor to the gating of dehydration activity, however, appears to be establishment of a proper hydrogen bonding configuration in order to stabilize the accumulation of negative charge on the eliminated hydroxyl group.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信