Subspace Constrained Variational Bayesian Inference for Structured Compressive Sensing With a Dynamic Grid

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
An Liu;Yufan Zhou;Wenkang Xu
{"title":"Subspace Constrained Variational Bayesian Inference for Structured Compressive Sensing With a Dynamic Grid","authors":"An Liu;Yufan Zhou;Wenkang Xu","doi":"10.1109/TSP.2025.3532953","DOIUrl":null,"url":null,"abstract":"We investigate the problem of recovering a structured sparse signal from a linear observation model with an uncertain dynamic grid in the sensing matrix. The state-of-the-art expectation maximization based compressed sensing (EM-CS) methods, such as turbo compressed sensing (Turbo-CS) and turbo variational Bayesian inference (Turbo-VBI), have a relatively slow convergence speed due to the double-loop iterations between the E-step and M-step. Moreover, each inner iteration in the E-step involves a high-dimensional matrix inverse in general, which is unacceptable for problems with large signal dimensions or real-time calculation requirements. Although there are some attempts to avoid the high-dimensional matrix inverse by majorization minimization, the convergence speed and accuracy are often sacrificed. To better address this problem, we propose an alternating estimation framework based on a novel subspace constrained VBI (SC-VBI) method, in which the high-dimensional matrix inverse is replaced by a low-dimensional subspace constrained matrix inverse (with the dimension equal to the sparsity level). We further prove the convergence of the SC-VBI to a stationary solution of the Kullback-Leibler divergence minimization problem. Simulations demonstrate that the proposed SC-VBI algorithm can achieve a much better tradeoff between complexity per iteration, convergence speed, and performance compared to the state-of-the-art algorithms.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"781-794"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10852191/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the problem of recovering a structured sparse signal from a linear observation model with an uncertain dynamic grid in the sensing matrix. The state-of-the-art expectation maximization based compressed sensing (EM-CS) methods, such as turbo compressed sensing (Turbo-CS) and turbo variational Bayesian inference (Turbo-VBI), have a relatively slow convergence speed due to the double-loop iterations between the E-step and M-step. Moreover, each inner iteration in the E-step involves a high-dimensional matrix inverse in general, which is unacceptable for problems with large signal dimensions or real-time calculation requirements. Although there are some attempts to avoid the high-dimensional matrix inverse by majorization minimization, the convergence speed and accuracy are often sacrificed. To better address this problem, we propose an alternating estimation framework based on a novel subspace constrained VBI (SC-VBI) method, in which the high-dimensional matrix inverse is replaced by a low-dimensional subspace constrained matrix inverse (with the dimension equal to the sparsity level). We further prove the convergence of the SC-VBI to a stationary solution of the Kullback-Leibler divergence minimization problem. Simulations demonstrate that the proposed SC-VBI algorithm can achieve a much better tradeoff between complexity per iteration, convergence speed, and performance compared to the state-of-the-art algorithms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信