Exploring Frequency-Inspired Optimization in Transformer for Efficient Single Image Super-Resolution

Ao Li;Le Zhang;Yun Liu;Ce Zhu
{"title":"Exploring Frequency-Inspired Optimization in Transformer for Efficient Single Image Super-Resolution","authors":"Ao Li;Le Zhang;Yun Liu;Ce Zhu","doi":"10.1109/TPAMI.2025.3529927","DOIUrl":null,"url":null,"abstract":"Transformer-based methods have exhibited remarkable potential in single image super-resolution (SISR) by effectively extracting long-range dependencies. However, most of the current research in this area has prioritized the design of transformer blocks to capture global information, while overlooking the importance of incorporating high-frequency priors, which we believe could be beneficial. In our study, we conducted a series of experiments and found that transformer structures are more adept at capturing low-frequency information, but have limited capacity in constructing high-frequency representations when compared to their convolutional counterparts. Our proposed solution, the <bold>c</b>ross-<bold>r</b>efinement <bold>a</b>daptive <bold>f</b>eature modulation <bold>t</b>ransformer (<bold>CRAFT</b>), integrates the strengths of both convolutional and transformer structures. It comprises three key components: the high-frequency enhancement residual block (<bold>HFERB</b>) for extracting high-frequency information, the shift rectangle window attention block (<bold>SRWAB</b>) for capturing global information, and the hybrid fusion block (<bold>HFB</b>) for refining the global representation. To tackle the inherent intricacies of transformer structures, we introduce a frequency-guided post-training quantization (PTQ) method aimed at enhancing CRAFT's efficiency. These strategies incorporate adaptive dual clipping and boundary refinement. To further amplify the versatility of our proposed approach, we extend our PTQ strategy to function as a general quantization method for transformer-based SISR techniques. Our experimental findings showcase CRAFT's superiority over current state-of-the-art methods, both in full-precision and quantization scenarios. These results underscore the efficacy and universality of our PTQ strategy.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"3141-3158"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10852524/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transformer-based methods have exhibited remarkable potential in single image super-resolution (SISR) by effectively extracting long-range dependencies. However, most of the current research in this area has prioritized the design of transformer blocks to capture global information, while overlooking the importance of incorporating high-frequency priors, which we believe could be beneficial. In our study, we conducted a series of experiments and found that transformer structures are more adept at capturing low-frequency information, but have limited capacity in constructing high-frequency representations when compared to their convolutional counterparts. Our proposed solution, the cross-refinement adaptive feature modulation transformer (CRAFT), integrates the strengths of both convolutional and transformer structures. It comprises three key components: the high-frequency enhancement residual block (HFERB) for extracting high-frequency information, the shift rectangle window attention block (SRWAB) for capturing global information, and the hybrid fusion block (HFB) for refining the global representation. To tackle the inherent intricacies of transformer structures, we introduce a frequency-guided post-training quantization (PTQ) method aimed at enhancing CRAFT's efficiency. These strategies incorporate adaptive dual clipping and boundary refinement. To further amplify the versatility of our proposed approach, we extend our PTQ strategy to function as a general quantization method for transformer-based SISR techniques. Our experimental findings showcase CRAFT's superiority over current state-of-the-art methods, both in full-precision and quantization scenarios. These results underscore the efficacy and universality of our PTQ strategy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信