MambaTab: A Plug-and-Play Model for Learning Tabular Data.

Md Atik Ahamed, Qiang Cheng
{"title":"MambaTab: A Plug-and-Play Model for Learning Tabular Data.","authors":"Md Atik Ahamed, Qiang Cheng","doi":"10.1109/mipr62202.2024.00065","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the prevalence of images and texts in machine learning, tabular data remains widely used across various domains. Existing deep learning models, such as convolutional neural networks and transformers, perform well however demand extensive preprocessing and tuning limiting accessibility and scalability. This work introduces an innovative approach based on a structured state-space model (SSM), MambaTab, for tabular data. SSMs have strong capabilities for efficiently extracting effective representations from data with long-range dependencies. MambaTab leverages Mamba, an emerging SSM variant, for end-to-end supervised learning on tables. Compared to state-of-the-art baselines, MambaTab delivers superior performance while requiring significantly fewer parameters, as empirically validated on diverse benchmark datasets. MambaTab's efficiency, scalability, generalizability, and predictive gains signify it as a lightweight, \"plug-and-play\" solution for diverse tabular data with promise for enabling wider practical applications.</p>","PeriodicalId":520274,"journal":{"name":"Proceedings. IEEE Conference on Multimedia Information Processing and Retrieval","volume":"2024 ","pages":"369-375"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Conference on Multimedia Information Processing and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mipr62202.2024.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the prevalence of images and texts in machine learning, tabular data remains widely used across various domains. Existing deep learning models, such as convolutional neural networks and transformers, perform well however demand extensive preprocessing and tuning limiting accessibility and scalability. This work introduces an innovative approach based on a structured state-space model (SSM), MambaTab, for tabular data. SSMs have strong capabilities for efficiently extracting effective representations from data with long-range dependencies. MambaTab leverages Mamba, an emerging SSM variant, for end-to-end supervised learning on tables. Compared to state-of-the-art baselines, MambaTab delivers superior performance while requiring significantly fewer parameters, as empirically validated on diverse benchmark datasets. MambaTab's efficiency, scalability, generalizability, and predictive gains signify it as a lightweight, "plug-and-play" solution for diverse tabular data with promise for enabling wider practical applications.

MambaTab:一个学习表格数据的即插即用模型。
尽管图像和文本在机器学习中很流行,但表格数据仍然广泛应用于各个领域。现有的深度学习模型,如卷积神经网络和变压器,表现良好,但需要大量的预处理和调整,限制了可访问性和可扩展性。这项工作介绍了一种基于结构化状态空间模型(SSM)的创新方法,MambaTab,用于表格数据。ssm具有强大的能力,可以从具有长期依赖关系的数据中高效地提取有效表示。MambaTab利用Mamba(一种新兴的SSM变体)在表上进行端到端监督学习。与最先进的基线相比,MambaTab提供了卓越的性能,同时需要更少的参数,并在不同的基准数据集上进行了经验验证。MambaTab的效率、可扩展性、通用性和预测增益表明,它是一种轻量级、“即插即用”的解决方案,适用于各种表格数据,有望实现更广泛的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信