Comprehension of gut microbiota and microRNAs may contribute to the development of innovative treatment tactics against metabolic disorders and psychiatric disorders.

Moeka Nakashima, Naoko Suga, Akari Fukumoto, Sayuri Yoshikawa, Satoru Matsuda
{"title":"Comprehension of gut microbiota and microRNAs may contribute to the development of innovative treatment tactics against metabolic disorders and psychiatric disorders.","authors":"Moeka Nakashima, Naoko Suga, Akari Fukumoto, Sayuri Yoshikawa, Satoru Matsuda","doi":"10.62347/WAZH2090","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic syndrome is a group of pathological disorders increasing the risk of serious diseases including cardiovascular disease, stroke, type 2 diabetes. Global widespread of the metabolic syndrome has put a heavy social burden. Interestingly, a crucial link between the metabolic syndrome and a psychiatric disorder may frequently coexist, in which certain shared mechanisms might play a role for the pathogenesis. In fact, some microRNAs (miRNAs) have been detected in the overlap pathology, suggesting a common molecular mechanism for the development of both disorders. Subsequent studies have revealed that these miRNAs and several metabolites of gut microbiota such as short chain fatty acids (SCFAs) might be involved in the development of both disorders, in which the association between gut and brain might play key roles with engram memory for the modulation of immune cells. Additionally, the correlation between brain and immunity might also influence the development of several diseases/disorders including metabolic syndrome. Brain could possess several inflammatory responses as an information of pathological images termed engrams. In other words, preservation of the engram memory might be achieved by a meta-plasticity mechanism that shapes the alteration of neuron linkages for the development of immune-related diseases. Therefore, it might be rational that metabolic syndrome and psychiatric disorders may belong to a group of immune-related diseases. Disrupting in gut microbiota may threaten the body homeostasis, leading to initiate a cascade of health problems. This concept may contribute to the development of superior therapeutic application with the usage of some functional components in food against metabolic and psychiatric disorders. This paper reviews advances in understanding the regulatory mechanisms of miRNAs with the impact to gut, liver and brain, deliberating the probable therapeutic techniques against these disorders.</p>","PeriodicalId":94056,"journal":{"name":"International journal of physiology, pathophysiology and pharmacology","volume":"16 6","pages":"111-125"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of physiology, pathophysiology and pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/WAZH2090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic syndrome is a group of pathological disorders increasing the risk of serious diseases including cardiovascular disease, stroke, type 2 diabetes. Global widespread of the metabolic syndrome has put a heavy social burden. Interestingly, a crucial link between the metabolic syndrome and a psychiatric disorder may frequently coexist, in which certain shared mechanisms might play a role for the pathogenesis. In fact, some microRNAs (miRNAs) have been detected in the overlap pathology, suggesting a common molecular mechanism for the development of both disorders. Subsequent studies have revealed that these miRNAs and several metabolites of gut microbiota such as short chain fatty acids (SCFAs) might be involved in the development of both disorders, in which the association between gut and brain might play key roles with engram memory for the modulation of immune cells. Additionally, the correlation between brain and immunity might also influence the development of several diseases/disorders including metabolic syndrome. Brain could possess several inflammatory responses as an information of pathological images termed engrams. In other words, preservation of the engram memory might be achieved by a meta-plasticity mechanism that shapes the alteration of neuron linkages for the development of immune-related diseases. Therefore, it might be rational that metabolic syndrome and psychiatric disorders may belong to a group of immune-related diseases. Disrupting in gut microbiota may threaten the body homeostasis, leading to initiate a cascade of health problems. This concept may contribute to the development of superior therapeutic application with the usage of some functional components in food against metabolic and psychiatric disorders. This paper reviews advances in understanding the regulatory mechanisms of miRNAs with the impact to gut, liver and brain, deliberating the probable therapeutic techniques against these disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信