Molecular modelling and optimization of a high-affinity nanobody targeting the nipah virus fusion protein through in silico site-directed mutagenesis

IF 2.6 4区 生物学 Q2 BIOLOGY
Nyzar Mabeth O. Odchimar , Albert Neil G. Dulay , Fredmoore L. Orosco
{"title":"Molecular modelling and optimization of a high-affinity nanobody targeting the nipah virus fusion protein through in silico site-directed mutagenesis","authors":"Nyzar Mabeth O. Odchimar ,&nbsp;Albert Neil G. Dulay ,&nbsp;Fredmoore L. Orosco","doi":"10.1016/j.compbiolchem.2025.108354","DOIUrl":null,"url":null,"abstract":"<div><div>Nipah virus (NiV) is a re-emerging zoonotic pathogen with a high mortality rate and no effective treatments, prompting the search for new antiviral strategies. While conventional antiviral drugs are often limited by issues such as poor specificity, off-target effects, and resistance development, nanobodies offer distinct advantages. These small, single-domain antibodies exhibit high specificity and stability, making them ideal candidates for antiviral therapy. The NiV fusion protein (NiVF) is a crucial target for nanobodies due to its vital role in infection. Thus, we aimed to design a high affinity nanobody targeting NiVF using computational methods. Molecular docking identified the lead NB with the highest binding energy to NiVF. The complementarity determining regions (CDRs) of the lead NB underwent two rounds of in silico site-directed mutagenesis generating a high-affinity engineered NB. Subsequent re-docking, molecular dynamics (MD) simulations, and various in silico evaluations, of the selected engineered NB-NiVF complex were performed. After mutations, results showed that the lead (native) NB, initially with a binding energy of −85.2 kcal.mol<sup>−1</sup>, was optimized to an engineered NB with a higher binding energy of −99.65 kcal.mol<sup>−1</sup>. Additionally, the engineered NB has more favorable physicochemical properties, exhibited a more stable (in a 200-ns MD simulation) and stronger molecular interactions than the native NB, suggesting a favorable mutation and enhancement of the potential neutralization activity of the engineered NB. This study highlights the use of computational methods to design an optimized high-affinity NB and the potential of NB-based antivirals against NiV, necessitating further experimental validation.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108354"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000143","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nipah virus (NiV) is a re-emerging zoonotic pathogen with a high mortality rate and no effective treatments, prompting the search for new antiviral strategies. While conventional antiviral drugs are often limited by issues such as poor specificity, off-target effects, and resistance development, nanobodies offer distinct advantages. These small, single-domain antibodies exhibit high specificity and stability, making them ideal candidates for antiviral therapy. The NiV fusion protein (NiVF) is a crucial target for nanobodies due to its vital role in infection. Thus, we aimed to design a high affinity nanobody targeting NiVF using computational methods. Molecular docking identified the lead NB with the highest binding energy to NiVF. The complementarity determining regions (CDRs) of the lead NB underwent two rounds of in silico site-directed mutagenesis generating a high-affinity engineered NB. Subsequent re-docking, molecular dynamics (MD) simulations, and various in silico evaluations, of the selected engineered NB-NiVF complex were performed. After mutations, results showed that the lead (native) NB, initially with a binding energy of −85.2 kcal.mol−1, was optimized to an engineered NB with a higher binding energy of −99.65 kcal.mol−1. Additionally, the engineered NB has more favorable physicochemical properties, exhibited a more stable (in a 200-ns MD simulation) and stronger molecular interactions than the native NB, suggesting a favorable mutation and enhancement of the potential neutralization activity of the engineered NB. This study highlights the use of computational methods to design an optimized high-affinity NB and the potential of NB-based antivirals against NiV, necessitating further experimental validation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信