Synthetic data as external control arms in scarce single-arm clinical trials.

PLOS digital health Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.1371/journal.pdig.0000581
Severin Elvatun, Daan Knoors, Simon Brant, Christian Jonasson, Jan F Nygård
{"title":"Synthetic data as external control arms in scarce single-arm clinical trials.","authors":"Severin Elvatun, Daan Knoors, Simon Brant, Christian Jonasson, Jan F Nygård","doi":"10.1371/journal.pdig.0000581","DOIUrl":null,"url":null,"abstract":"<p><p>An external control arm based on health registry data can serve as an alternative comparator in single-arm drug development studies that lack a benchmark for comparison to the experimental treatment. However, accessing such observational healthcare data involves a lengthy and intricate application process, delaying drug approval studies and access to novel treatments. Clinical trials typically comprise only a few hundred patients usually with high-cardinality features, which makes individual data instances more exposed to re-identification attacks. We examine whether synthetic data can serve as a proxy for the empirical control arm data by providing the same research outcomes while reducing the risk of information disclosure. We propose a reversible data generalization procedure to address these particular data characteristics that can be used in conjunction with any generator algorithm. It reduces the input data cardinality pre-synthesis and reverses it post-synthesis to regain the original data structure. Finally, we test a selection of state-of-the-art generators against a suite of utility and privacy metrics. The external control arm benchmark was generated using data from Norwegian health registries. In this retrospective study, we compare various synthetic data generation algorithms in numerical experiments, focusing on the utility of the synthetic data to support the conclusions drawn from the empirical data, and analysing the risk of sensitive information disclosure. Our results indicate that data generalization is advantageous to enhance both data utility and privacy in smaller datasets with high cardinality. Moreover, the generator algorithms demonstrate the ability to generate synthetic data of high utility without compromising the confidentiality of the empirical data. Our finding suggests that synthetic external control arms could serve as a viable alternative to observational data in drug development studies, while reducing the risk of revealing sensitive patient information.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 1","pages":"e0000581"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An external control arm based on health registry data can serve as an alternative comparator in single-arm drug development studies that lack a benchmark for comparison to the experimental treatment. However, accessing such observational healthcare data involves a lengthy and intricate application process, delaying drug approval studies and access to novel treatments. Clinical trials typically comprise only a few hundred patients usually with high-cardinality features, which makes individual data instances more exposed to re-identification attacks. We examine whether synthetic data can serve as a proxy for the empirical control arm data by providing the same research outcomes while reducing the risk of information disclosure. We propose a reversible data generalization procedure to address these particular data characteristics that can be used in conjunction with any generator algorithm. It reduces the input data cardinality pre-synthesis and reverses it post-synthesis to regain the original data structure. Finally, we test a selection of state-of-the-art generators against a suite of utility and privacy metrics. The external control arm benchmark was generated using data from Norwegian health registries. In this retrospective study, we compare various synthetic data generation algorithms in numerical experiments, focusing on the utility of the synthetic data to support the conclusions drawn from the empirical data, and analysing the risk of sensitive information disclosure. Our results indicate that data generalization is advantageous to enhance both data utility and privacy in smaller datasets with high cardinality. Moreover, the generator algorithms demonstrate the ability to generate synthetic data of high utility without compromising the confidentiality of the empirical data. Our finding suggests that synthetic external control arms could serve as a viable alternative to observational data in drug development studies, while reducing the risk of revealing sensitive patient information.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信