Bayesian efficient safety monitoring: a simple and well-performing framework to continuous safety monitoring of adverse events in randomized clinical trials.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Liangcai Zhang, Ming Chen, Vladimir Dragalin, Bin Eddy Jia, Cunyi Wang, Leixin Xia, Chaohui Yuan, Fei Chen
{"title":"Bayesian efficient safety monitoring: a simple and well-performing framework to continuous safety monitoring of adverse events in randomized clinical trials.","authors":"Liangcai Zhang, Ming Chen, Vladimir Dragalin, Bin Eddy Jia, Cunyi Wang, Leixin Xia, Chaohui Yuan, Fei Chen","doi":"10.1080/10543406.2025.2456176","DOIUrl":null,"url":null,"abstract":"<p><p>During randomized controlled trials, it is critical to remain vigilant in safety monitoring. A common approach is to present information over time, such as frequency tables and graphs, when analyzing adverse events. Nevertheless, there is still a need for developing statistical methods for analyzing safety data of a dynamic nature. The process is typically challenging due to small sample sizes, a lack of observational data sources, difficulties in false-positive control, and the necessity for early detection of serious adverse events. In this article, we propose a simple and effective framework called Bayesian Efficient sAfety Monitoring (BEAM) to analyze evidence aggregation of potentially serious adverse events that may arise during the trial, as well as a timeline for when concrete evidence for safety concerns of unlikely outcomes becomes available. BEAM can be easily tabulated and visualized before the trial starts, making evaluations transparent and easy to use in practice, while maintaining flexibility when the underlying adverse event rate varies. Simulation studies have shown that BEAM supports continuous monitoring, can incorporate external information, and demonstrates good operating characteristics across various scenarios. In most practical situations, it has a reasonable likelihood of detecting elevated risks and identifying safety signals early on when safety concerns arise regarding the investigational drug.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-12"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2456176","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

During randomized controlled trials, it is critical to remain vigilant in safety monitoring. A common approach is to present information over time, such as frequency tables and graphs, when analyzing adverse events. Nevertheless, there is still a need for developing statistical methods for analyzing safety data of a dynamic nature. The process is typically challenging due to small sample sizes, a lack of observational data sources, difficulties in false-positive control, and the necessity for early detection of serious adverse events. In this article, we propose a simple and effective framework called Bayesian Efficient sAfety Monitoring (BEAM) to analyze evidence aggregation of potentially serious adverse events that may arise during the trial, as well as a timeline for when concrete evidence for safety concerns of unlikely outcomes becomes available. BEAM can be easily tabulated and visualized before the trial starts, making evaluations transparent and easy to use in practice, while maintaining flexibility when the underlying adverse event rate varies. Simulation studies have shown that BEAM supports continuous monitoring, can incorporate external information, and demonstrates good operating characteristics across various scenarios. In most practical situations, it has a reasonable likelihood of detecting elevated risks and identifying safety signals early on when safety concerns arise regarding the investigational drug.

贝叶斯有效安全监测:随机临床试验中不良事件持续安全监测的一个简单且性能良好的框架。
在随机对照试验中,对安全性监测保持警惕是至关重要的。一种常见的方法是在分析不良事件时呈现随时间变化的信息,例如频率表和图表。然而,仍然需要发展统计方法来分析动态性质的安全数据。由于样本量小、缺乏观测数据源、假阳性控制困难以及早期发现严重不良事件的必要性,这一过程通常具有挑战性。在本文中,我们提出了一个简单而有效的框架,称为贝叶斯有效安全监测(BEAM),以分析试验期间可能出现的潜在严重不良事件的证据汇总,以及何时获得不太可能结果的安全问题的具体证据的时间表。在试验开始前,BEAM可以很容易地制表和可视化,使评估透明和易于在实践中使用,同时在潜在不良事件发生率变化时保持灵活性。仿真研究表明,BEAM支持连续监测,可以整合外部信息,并在各种场景中表现出良好的操作特性。在大多数实际情况下,当研究药物出现安全问题时,它有合理的可能性检测到风险升高并及早识别安全信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信