{"title":"Neural reshaping: the plasticity of human brain and artificial intelligence in the learning process.","authors":"Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Ommolbanin Soleimani, Sahar Ahmadi","doi":"10.62347/NHKD7661","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the concept of neural reshaping and the mechanisms through which both human and artificial intelligence adapt and learn.</p><p><strong>Objectives: </strong>To investigate the parallels and distinctions between human brain plasticity and artificial neural network plasticity, with a focus on their learning processes.</p><p><strong>Methods: </strong>A comparative analysis was conducted using literature reviews and machine learning experiments, specifically employing a multi-layer perceptron neural network to examine regression and classification problems.</p><p><strong>Results: </strong>Experimental findings demonstrate that machine learning models, similar to human neuroplasticity, enhance performance through iterative learning and optimization, drawing parallels in strengthening and adjusting connections.</p><p><strong>Conclusions: </strong>Understanding the shared principles and limitations of neural and artificial plasticity can drive advancements in AI design and cognitive neuroscience, paving the way for future interdisciplinary innovations.</p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"13 5","pages":"34-48"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of neurodegenerative disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/NHKD7661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the concept of neural reshaping and the mechanisms through which both human and artificial intelligence adapt and learn.
Objectives: To investigate the parallels and distinctions between human brain plasticity and artificial neural network plasticity, with a focus on their learning processes.
Methods: A comparative analysis was conducted using literature reviews and machine learning experiments, specifically employing a multi-layer perceptron neural network to examine regression and classification problems.
Results: Experimental findings demonstrate that machine learning models, similar to human neuroplasticity, enhance performance through iterative learning and optimization, drawing parallels in strengthening and adjusting connections.
Conclusions: Understanding the shared principles and limitations of neural and artificial plasticity can drive advancements in AI design and cognitive neuroscience, paving the way for future interdisciplinary innovations.